# Greetings from The On-Line Encyclopedia of Integer Sequences! http://oeis.org/ Search: id:a295365 Showing 1-1 of 1 %I A295365 #5 Nov 21 2017 21:34:15 %S A295365 1,2,3,20,41,82,147,256,433,722,1191,1952,3185,5182,8415,13648,22117, %T A295365 35823,58002,93891,151962,245925,397962,643965,1042008,1686057, %U A295365 2728152,4414299,7142544,11556939,18699582 %N A295365 Solution of the complementary equation a(n) = a(n-1) + a(n-2) + b(n-1) + b(n-2) + b(n-3), where a(0) = 1, a(1) = 2, a[2] = 3, b(0) = 4, b(1) = 5, b(2) = 6, and (a(n)) and (b(n)) are increasing complementary sequences. %C A295365 The increasing complementary sequences a() and b() are uniquely determined by the titular equation and initial values. See A295357 for a guide to related sequences. %H A295365 Clark Kimberling, Complementary equations, J. Int. Seq. 19 (2007), 1-13. %F A295365 a(n)/a(n-1) -> (1 + sqrt(5))/2 = golden ratio (A001622). %e A295365 a(0) = 1, a(1) = 2, a[2] = 3, b(0) = 4, b(1) = 5, b(2) = 6, so that %e A295365 b(2) = 7 (least "new number") %e A295365 a(3) = a(2) + a(1) + b(2) + b(1) + b(0) = 20 %e A295365 Complement: (b(n)) = (4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, ...) %t A295365 mex := First[Complement[Range[1, Max[#1] + 1], #1]] &; %t A295365 a[0] = 1; a[1] = 2; a[2] = 3; b[0] = 4; b[1] = 5; b[2]=6; %t A295365 a[n_] := a[n] = a[n - 1] + a[n - 2] + b[n - 1] + b[n - 2] + b[n - 3]; %t A295365 b[n_] := b[n] = mex[Flatten[Table[Join[{a[n]}, {a[i], b[i]}], {i, 0, n - 1}]]]; %t A295365 z = 32; u = Table[a[n], {n, 0, z}] (* A295365 *) %t A295365 v = Table[b[n], {n, 0, 10}] (* complement *) %Y A295365 Cf. A001622, A295357. %K A295365 nonn,easy %O A295365 0,2 %A A295365 _Clark Kimberling_, Nov 21 2017 # Content is available under The OEIS End-User License Agreement: http://oeis.org/LICENSE