# Greetings from The On-Line Encyclopedia of Integer Sequences! http://oeis.org/ Search: id:a294382 Showing 1-1 of 1 %I A294382 #11 Nov 06 2018 04:15:48 %S A294382 1,3,5,19,113,790,6319,56870,568699,6255688,75068255,975887314, %T A294382 13662422395 %N A294382 Solution of the complementary equation a(n) = a(n-1)*b(n-2) - 1, where a(0) = 1, a(1) = 3, b(0) = 2, b(1) = 4. %C A294382 The complementary sequences a() and b() are uniquely determined by the titular equation and initial values. See A294381 for a guide to related sequences. %H A294382 Clark Kimberling, Complementary equations, J. Int. Seq. 19 (2007), 1-13. %e A294382 a(0) = 1, a(1) = 3, b(0) = 2, b(1) = 4, so that %e A294382 a(2) = a(1)*b(0) - 1 = 5 %e A294382 Complement: (b(n)) = (2, 4, 6, 7, 8, 9, 10, 12, 13, 14, 15, 16, ...) %t A294382 mex := First[Complement[Range[1, Max[#1] + 1], #1]] &; %t A294382 a[0] = 1; a[1] = 3; b[0] = 2; b[1] = 4; %t A294382 a[n_] := a[n] = a[n - 1]*b[n - 2] - 1; %t A294382 b[n_] := b[n] = mex[Flatten[Table[Join[{a[n]}, {a[i], b[i]}], {i, 0, n - 1}]]]; %t A294382 Table[a[n], {n, 0, 40}] (* A294382 *) %t A294382 Table[b[n], {n, 0, 10}] %Y A294382 Cf. A293076, A293765, A294381. %K A294382 nonn,more %O A294382 0,2 %A A294382 _Clark Kimberling_, Oct 29 2017 # Content is available under The OEIS End-User License Agreement: http://oeis.org/LICENSE