# Greetings from The On-Line Encyclopedia of Integer Sequences! http://oeis.org/ Search: id:a286142 Showing 1-1 of 1 %I A286142 #16 May 10 2017 14:30:05 %S A286142 1,5,2,12,2,31,2,38,7,23,2,94,2,23,16,138,2,94,2,80,16,23,2,328,7,23, %T A286142 29,80,2,532,2,530,16,23,16,706,2,23,16,302,2,499,2,80,67,23,2,1228,7, %U A286142 80,16,80,2,328,16,302,16,23,2,1957,2,23,67,2082,16,499,2,80,16,467,2,2704,2,23,67,80,16,499,2,1178,121,23,2,1894,16,23,16,302,2,1957,16 %N A286142 Compound filter: a(n) = T(A257993(n), A046523(n)), where T(n,k) is sequence A000027 used as a pairing function. %H A286142 Antti Karttunen, Table of n, a(n) for n = 1..10000 %H A286142 MathWorld, Pairing Function %F A286142 a(n) = (1/2)*(2 + ((A257993(n)+A046523(n))^2) - A257993(n) - 3*A046523(n)). %t A286142 Table[(2 + (#1 + #2)^2 - #1 - 3 #2)/2 - Boole[n == 1] & @@ {Module[{i = 1}, While[! CoprimeQ[Prime@ i, n], i++]; i], Times @@ MapIndexed[ Prime[First@ #2]^#1 &, Sort[FactorInteger[n][[All, -1]], Greater]]}, {n, 92}] (* _Michael De Vlieger_, May 04 2017 *) %o A286142 (PARI) %o A286142 A046523(n) = { my(f=vecsort(factor(n)[, 2], , 4), p); prod(i=1, #f, (p=nextprime(p+1))^f[i]); }; \\ This function from _Charles R Greathouse IV_, Aug 17 2011 %o A286142 A257993(n) = { for(i=1,n,if(n%prime(i),return(i))); } %o A286142 A286142(n) = (1/2)*(2 + ((A257993(n)+A046523(n))^2) - A257993(n) - 3*A046523(n)); %o A286142 for(n=1, 10000, write("b286142.txt", n, " ", A286142(n))); %o A286142 (Scheme) (define (A286142 n) (* (/ 1 2) (+ (expt (+ (A257993 n) (A046523 n)) 2) (- (A257993 n)) (- (* 3 (A046523 n))) 2))) %o A286142 (Python) %o A286142 from sympy import factorint, prime, primepi, gcd %o A286142 def T(n, m): return ((n + m)**2 - n - 3*m + 2)/2 %o A286142 def P(n): %o A286142 f = factorint(n) %o A286142 return sorted([f[i] for i in f]) %o A286142 def a046523(n): %o A286142 x=1 %o A286142 while True: %o A286142 if P(n) == P(x): return x %o A286142 else: x+=1 %o A286142 def a053669(n): %o A286142 x=1 %o A286142 while True: %o A286142 if gcd(prime(x), n) == 1: return prime(x) %o A286142 else: x+=1 %o A286142 def a257993(n): return primepi(a053669(n)) %o A286142 def a(n): return T(a257993(n), a046523(n)) # _Indranil Ghosh_, May 05 2017 %Y A286142 Cf. A000027, A046523, A257993, A286144, A286160, A286161, A286162, A286163, A286164. %Y A286142 Differs from A286143 for the first time at n=24, where a(24) = 328, while A286143(24) = 355. %K A286142 nonn %O A286142 1,2 %A A286142 _Antti Karttunen_, May 04 2017 # Content is available under The OEIS End-User License Agreement: http://oeis.org/LICENSE