# Greetings from The On-Line Encyclopedia of Integer Sequences! http://oeis.org/ Search: id:a270748 Showing 1-1 of 1 %I A270748 #8 Oct 03 2018 16:12:17 %S A270748 3,48,5215,43930979,8221176288381971, %T A270748 237472642129791861355082716048930, %U A270748 59916111345562665920456160598356741759066440491193682529746704653 %N A270748 (r,1)-greedy sequence, where r(k) = 2/log(k+1). %C A270748 Let x > 0, and let r = (r(k)) be a sequence of positive irrational numbers. Let a(1) be the least positive integer m such that r(1)/m < x, and inductively let a(n) be the least positive integer m such that r(1)/a(1) + ... + r(n-1)/a(n-1) + r(n)/m < x. The sequence (a(n)) is the (r,x)-greedy sequence. We are interested in choices of r and x for which the series r(1)/a(1) + ... + r(n)/a(n) + ... converges to x. See A270744 for a guide to related sequences. %F A270748 a(n) = ceiling(r(n)/s(n)), where s(n) = 1 - r(1)/a(1) - r(2)/a(2) - ... - r(n-1)/a(n-1). %F A270748 r(1)/a(1) + ... + r(n)/a(n) + ... = 1 %e A270748 a(1) = ceiling(r(1)) = ceiling(1/tau) = ceiling(0.618...) = 3; %e A270748 a(2) = ceiling(r(2)/(1 - r(1)/1) = 48; %e A270748 a(3) = ceiling(r(3)/(1 - r(1)/1 - r(2)/2) = 5215. %e A270748 The first 3 terms of the series r(1)/a(1) + ... + r(n)/a(n) + ... are %e A270748 0.961..., 0.997..., 0.99999997... %t A270748 $MaxExtraPrecision = Infinity; z = 16; %t A270748 r[k_] := N[2/Log[k + 1], 1000]; f[x_, 0] = x; %t A270748 n[x_, k_] := n[x, k] = Ceiling[r[k]/f[x, k - 1]] %t A270748 f[x_, k_] := f[x, k] = f[x, k - 1] - r[k]/n[x, k] %t A270748 x = 1; Table[n[x, k], {k, 1, z}] %t A270748 N[Sum[r[k]/n[x, k], {k, 1, 18}], 200] %Y A270748 Cf. A001620, A270744. %K A270748 nonn,easy %O A270748 1,1 %A A270748 _Clark Kimberling_, Apr 09 2016 # Content is available under The OEIS End-User License Agreement: http://oeis.org/LICENSE