# Greetings from The On-Line Encyclopedia of Integer Sequences! http://oeis.org/ Search: id:a278750 Showing 1-1 of 1 %I A278750 #16 Nov 30 2016 21:30:26 %S A278750 1,3,39,1137,58221,4615623,523484019,80413567317,16072230046041, %T A278750 4053246141598443,1258826280827924799,472083799922946212697, %U A278750 210327336751547848824261,109812853605044722106919663,66408636977597058929358851979,46050900932480002492822649518077,36298045342567148350546493472175281,32270728864033978097224807327165446483 %N A278750 E.g.f. S(x) = Integral C(x)*D(x)^2 dx, where C(x)^2 - S(x)^2 = 1 and 3*C(x)^2 - 2*D(x)^3 = 1. %H A278750 Paul D. Hanna, Table of n, a(n) for n = 0..200 %F A278750 E.g.f. S(x) and related series C(x) and D(x) satisfy: %F A278750 (1) S(x) = Integral C(x)*D(x)^2 dx, %F A278750 (2) C(x) = 1 + Integral S(x)*D(x)^2 dx, %F A278750 (3) D(x) = 1 + Integral S(x)*C(x) dx, %F A278750 (4) C(x)^2 - S(x)^2 = 1, %F A278750 (5) 3*C(x)^2 - 2*D(x)^3 = 1, %F A278750 (6) 2*D(x)^3 - 3*S(x)^2 = 2, %F A278750 (7) C(x) + S(x) = exp( Integral D(x)^2 dx ). %e A278750 E.g.f.: S(x) = x + 3*x^3/3! + 39*x^5/5! + 1137*x^7/7! + 58221*x^9/9! + 4615623*x^11/11! + 523484019*x^13/13! + 80413567317*x^15/15! + 16072230046041*x^17/17! + 4053246141598443*x^19/19! +... %e A278750 and related series %e A278750 C(x) = 1 + x^2/2! + 9*x^4/4! + 189*x^6/6! + 7521*x^8/8! + 487521*x^10/10! + 46747449*x^12/12! + 6218441469*x^14/14! + 1095843999681*x^16/16! + 247107215918241*x^18/18! +... %e A278750 D(x) = 1 + x^2/2! + 6*x^4/4! + 114*x^6/6! + 4224*x^8/8! + 258696*x^10/10! + 23685696*x^12/12! + 3030422544*x^14/14! + 516368179584*x^16/16! + 113039478326016*x^18/18! +... %e A278750 satisfy %e A278750 C(x)^2 - S(x)^2 = 1, %e A278750 3*C(x)^2 - 2*D(x)^3 = 1. %e A278750 Related expansions. %e A278750 C(x)^2 = 1 + 2*x^2/2! + 24*x^4/4! + 648*x^6/6! + 31296*x^8/8! + 2366352*x^10/10! + 257865984*x^12/12! + 38266414848*x^14/14! + 7419295374336*x^16/16! + 1820980419409152*x^18/18! +... %e A278750 D(x)^2 = 1 + 2*x^2/2! + 18*x^4/4! + 408*x^6/6! + 17352*x^8/8! + 1184832*x^10/10! + 118618128*x^12/12! + 16371203328*x^14/14! + 2979295540992*x^16/16! + 691248148134912*x^18/18! +... %e A278750 D(x)^3 = 1 + 3*x^2/2! + 36*x^4/4! + 972*x^6/6! + 46944*x^8/8! + 3549528*x^10/10! + 386798976*x^12/12! + 57399622272*x^14/14! + 11128943061504*x^16/16! + 2731470629113728*x^18/18! +... %e A278750 such that 2*D(x)^3 - 3*S(x)^2 = 2. %o A278750 (PARI) {a(n) = my(S=x, C=1, D=1); for(i=1,2*n, S = intformal(C*(D^2 +O(x^(2*n+2)))); C = 1 + intformal(S*(D^2 +O(x^(2*n+2)))); D = 1 + intformal(S*C); ); (2*n+1)!*polcoeff(S,2*n+1)} %o A278750 for(n=0,20,print1(a(n),", ")) %Y A278750 Cf. A278751 (C(x)), A278752 (D(x)), A278749 (C(x) + S(x)). %K A278750 nonn %O A278750 0,2 %A A278750 _Paul D. Hanna_, Nov 27 2016 # Content is available under The OEIS End-User License Agreement: http://oeis.org/LICENSE