# Greetings from The On-Line Encyclopedia of Integer Sequences! http://oeis.org/
Search: id:a278428
Showing 1-1 of 1
%I A278428 #15 Oct 03 2023 03:07:18
%S A278428 1,1,1,2,6,17,46,128,373,1119,3405,10464,32478,101781,321642,1023512,
%T A278428 3276326,10543100,34088806,110690682,360810160,1180195810,3872588051,
%U A278428 12743937024,42049240694,139082885503,461072582522,1531697761470,5098246648103,17000237006441
%N A278428 Series reversion of g.f. (1/2)*x*(-1; -x)_inf, where (a; q)_inf is the q-Pochhammer symbol.
%C A278428 (1/2)*x*(-1; -x)_inf is the g.f. for A081360 shifted right.
%H A278428 Vaclav Kotesovec, Table of n, a(n) for n = 1..1000
%H A278428 Eric Weisstein's World of Mathematics, q-Pochhammer Symbol.
%F A278428 a(n) ~ c * d^n / n^(3/2), where c = 0.1211369424750398272226454930396... and d = A318204 = 3.509754327949703340437273523375193698454789733931739911... - _Vaclav Kotesovec_, Nov 23 2016
%t A278428 InverseSeries[x QPochhammer[-1, -x]/2 + O[x]^35][[3]]
%t A278428 (* Calculation of constant c: *) 1/Sqrt[(4/s^2 - s*Derivative[0, 2][QPochhammer][-1, -s]/r) * Pi] /. FindRoot[{2*r == s*QPochhammer[-1, -s], 2*r == s^2*Derivative[0, 1][QPochhammer][-1, -s]}, {r, 1/3}, {s, 1/2}, WorkingPrecision -> 120] (* _Vaclav Kotesovec_, Oct 03 2023 *)
%Y A278428 Cf. A081360, A109085, A171805, A181315, A255526.
%K A278428 nonn
%O A278428 1,4
%A A278428 _Vladimir Reshetnikov_, Nov 21 2016
# Content is available under The OEIS End-User License Agreement: http://oeis.org/LICENSE