# Greetings from The On-Line Encyclopedia of Integer Sequences! http://oeis.org/ Search: id:a277362 Showing 1-1 of 1 %I A277362 #14 Oct 27 2021 13:35:29 %S A277362 1,2,14,164,2646,53852,1316364,37467080,1215510118,44249471916, %T A277362 1785942489700,79150848980216,3821494523507708,199668288426274968, %U A277362 11225643465179779544,675769562728962818448,43370783734391689628294,2956329387192674856638668 %N A277362 Self-convolution of a(n)/4^n gives factorials (A000142). %C A277362 Self-convolution of a(n) gives A047053. %H A277362 Vaclav Kotesovec, Table of n, a(n) for n = 0..360 %F A277362 Sum_{k=0..n} a(k)/4^k * a(n-k)/4^(n-k) = n!. %F A277362 a(n) ~ 2^(2*n-1) * n!. - _Vaclav Kotesovec_, Oct 27 2021 %p A277362 a:= proc(n) option remember; `if`(n=0, 1, %p A277362 (n!*4^n-add(a(k)*a(n-k), k=1..n-1))/2) %p A277362 end: %p A277362 seq(a(n), n=0...20); # _Alois P. Heinz_, Oct 12 2016 %t A277362 With[{n = 20}, Sqrt[Sum[k! (4 x)^k, {k, 0, n - 1}] + O[x]^n][[3]]] %t A277362 CoefficientList[Series[Sqrt[-Gamma[0, -1/(4*x)]/(x*E^(1/(4*x)))]/2, {x, 0, 20}], x] (* _Vaclav Kotesovec_, Oct 27 2021 *) %Y A277362 Cf. A000142, A000302, A047053. %K A277362 nonn %O A277362 0,2 %A A277362 _Vladimir Reshetnikov_, Oct 10 2016 # Content is available under The OEIS End-User License Agreement: http://oeis.org/LICENSE