# Greetings from The On-Line Encyclopedia of Integer Sequences! http://oeis.org/ Search: id:a276903 Showing 1-1 of 1 %I A276903 #22 Oct 11 2016 08:42:00 %S A276903 0,1,2,7,25,96,382,1567,6575,28096,121847,534953,2373032,10619922, %T A276903 47890013,217395690,992640367,4555957948,21007405327,97266928685, %U A276903 452046424465,2108022305795,9860773604035,46256877824220,217555982625385,1025667805621986,4846240583558277 %N A276903 Number of positive walks with n steps {-2,-1,0,1,2} starting at the origin, ending at altitude 2, and staying strictly above the x-axis. %H A276903 Alois P. Heinz, Table of n, a(n) for n = 0..1437 %H A276903 C. Banderier, C. Krattenthaler, A. Krinik, D. Kruchinin, V. Kruchinin, D. Nguyen, and M. Wallner, Explicit formulas for enumeration of lattice paths: basketball and the kernel method, arXiv preprint arXiv:1609.06473 [math.CO], 2016. %t A276903 walks[n_, k_, h_] = 0; %t A276903 walks[1, k_, h_] := Boole[0 < k <= h]; %t A276903 walks[n_, k_, h_] /; n >= 2 && k > 0 := walks[n, k, h] = Sum[walks[n - 1, k + x, h], {x, -h, h}]; %t A276903 (* walks represents the number of positive walks with n steps {-h, -h+1, ... , h} that end at altitude k *) %t A276903 A276903[n_] := (Do[walks[m, k, 2], {m, n}, {k, 2 m}]; walks[n, 2, 2]) (* _Davin Park_, Oct 10 2016 *) %Y A276903 Cf. A276852, A276901, A276902, A276904. %K A276903 nonn,walk %O A276903 0,3 %A A276903 _Michael Wallner_, Sep 21 2016 # Content is available under The OEIS End-User License Agreement: http://oeis.org/LICENSE