# Greetings from The On-Line Encyclopedia of Integer Sequences! http://oeis.org/
Search: id:a268316
Showing 1-1 of 1
%I A268316 #44 Sep 08 2022 08:46:15
%S A268316 1,1,7,57,484,4199,36938,328185,2937932,26457508,239414383,2175127695,
%T A268316 19827974412,181266501290,1661241473220,15257624681145,
%U A268316 140400178555644,1294141164447692,11946771748196428,110435320379615620,1022108852175416720,9470416604629933935
%N A268316 a(n) is the number of Dyck paths of length 4n and height n.
%C A268316 Equivalently, a(n) is the number of rooted plane trees with 2n+1 nodes and height n.
%H A268316 Gheorghe Coserea, Table of n, a(n) for n = 0..1000.
%H A268316 Gheorghe Coserea, Solutions for n=3.
%H A268316 Gheorghe Coserea, Solutions for n=4.
%H A268316 Gheorghe Coserea, MiniZinc model for generating solutions.
%F A268316 a(n) = T(2n,n), where T(n,k) is defined by A080936.
%F A268316 a(n) = binomial(4*n,n) * 2*(2*n+3)*(2*n^2+1)/((3*n+1)*(3*n+2)*(3*n+3)).
%F A268316 a(n) ~ K * A268315^n / sqrt(n), where K = 8/27 * sqrt(2/(3*Pi)) = 0.13649151584...
%F A268316 G.f.: -((3F2(-3/4, -1/2, -1/4; 1/3, 2/3; 256*x/27)-1)/(4*x)) + 4/5*x*3F2(5/4, 3/2, 7/4; 7/3, 8/3; 256*x/27) + 8/3*x^2*3F2(9/4, 5/2, 11/4; 10/3, 11/3; 256*x/27). - _Benedict W. J. Irwin_, Aug 09 2016
%F A268316 Recurrence: 3*(n+1)*(2*n + 1)*(3*n + 1)*(3*n + 2)*(2*n^2 - 4*n + 3)*a(n) = 8*(2*n - 1)*(2*n + 3)*(4*n - 3)*(4*n - 1)*(2*n^2 + 1)*a(n-1). - _Vaclav Kotesovec_, Aug 10 2016
%e A268316 For n = 2 the a(2) = 7 solutions are
%e A268316 /\/\/\ |
%e A268316 LLRLRLRR / \ /|\
%e A268316 ................................
%e A268316 /\ /|\
%e A268316 LRLLRRLR /\/ \/\ |
%e A268316 ................................
%e A268316 /\ /\ /\
%e A268316 LLRRLLRR / \/ \ / \
%e A268316 ................................
%e A268316 /\ /|\
%e A268316 LLRRLRLR / \/\/\ /
%e A268316 ................................
%e A268316 /\ /|\
%e A268316 LRLRLLRR /\/\/ \ \
%e A268316 ................................
%e A268316 /\/\ /\
%e A268316 LLRLRRLR / \/\ /\
%e A268316 ................................
%e A268316 /\/\ /\
%e A268316 LRLLRLRR /\/ \ /\
%t A268316 Table[Binomial[4 n, n] 2 (2 n + 3) (2 n^2 + 1) / ((3 n + 1) (3 n + 2) (3 n + 3)), {n, 1, 25}] (* _Vincenzo Librandi_, Feb 04 2016 *)
%t A268316 Drop[CoefficientList[Series[-((-1 + HypergeometricPFQ[{-3/4, -1/2, -1/4}, {1/3, 2/3}, 256 x/27])/(4x)) + 4/5 x HypergeometricPFQ[{5/4, 3/2, 7/4}, {7/3, 8/3}, 256 x/27] + 8/3 x^2 HypergeometricPFQ[{9/4, 5/2, 11/4}, {10/3, 11/3}, 256x/27], {x, 0, 20}], x], 1] (* _Benedict W. J. Irwin_, Aug 09 2016 *)
%o A268316 (PARI)
%o A268316 a(n) = binomial(4*n,n) * 2*(2*n+3)*(2*n^2+1)/((3*n+1)*(3*n+2)*(3*n+3));
%o A268316 vector(21, i, a(i))
%o A268316 (Magma) [Binomial(4*n, n)*2*(2*n+3)*(2*n^2+1)/((3*n+1)*(3*n+2)*(3*n+3)): n in [1..30]]; // _Vincenzo Librandi_, Feb 04 2016
%Y A268316 Cf. A080936, A268315.
%Y A268316 Column k=2 of A289481.
%K A268316 nonn,walk
%O A268316 0,3
%A A268316 _Gheorghe Coserea_, Feb 01 2016
%E A268316 Added a(0)=1, adjusted b-file - _N. J. A. Sloane_, Dec 22 2016
# Content is available under The OEIS End-User License Agreement: http://oeis.org/LICENSE