# Greetings from The On-Line Encyclopedia of Integer Sequences! http://oeis.org/ Search: id:a258660 Showing 1-1 of 1 %I A258660 #12 Jun 09 2015 21:07:58 %S A258660 1,4,9,1521,3600,7396,8100,103041,120409,160801,11471769,11655396, %T A258660 12802084,15210000,22724289,36000000,42889401,42928704,45481536, %U A258660 45968400,46009089,54567769,61811044,62236321,70006689,73925604,73960000,76965529,79174404,81000000,85008400,97693456,97713225,100000000 %N A258660 Numbers n such that the number of digits d in n is not prime and for each factor f of d the sum of the d/f digit groupings of size f is a square. %C A258660 If a(n) has m = p^k digits, then a(n)*10^((p-1)*m) is also a member of the sequence. For instance, 1521*10^(2^k-4) is in the sequence for all integers k >=2. # _Chai Wah Wu_, Jun 08 2015 %H A258660 Chai Wah Wu, Table of n, a(n) for n = 1..3730 %F A258660 a(n) = A153745(n)^2. %o A258660 (Python) %o A258660 from sympy import divisors %o A258660 from gmpy2 import is_prime, isqrt, isqrt_rem, is_square %o A258660 A258660_list = [] %o A258660 for l in range(1,17): %o A258660 ....if not is_prime(l): %o A258660 ........fs = divisors(l) %o A258660 ........a, b = isqrt_rem(10**(l-1)) %o A258660 ........if b > 0: %o A258660 ............a += 1 %o A258660 ........for n in range(a,isqrt(10**l-1)+1): %o A258660 ............n2 = n**2 %o A258660 ............ns = str(n2) %o A258660 ............for g in fs: %o A258660 ................y = 0 %o A258660 ................for h in range(0,l,g): %o A258660 ....................y += int(ns[h:h+g]) %o A258660 ................if not is_square(y): %o A258660 ....................break %o A258660 ............else: %o A258660 ................A258660_list.append(n2) # _Chai Wah Wu_, Jun 08 2015 %Y A258660 Cf. A153745. %K A258660 base,nonn %O A258660 1,2 %A A258660 _Doug Bell_, Jun 06 2015 %E A258660 Corrected a(13)-a(14) by _Chai Wah Wu_, Jun 08 2015 # Content is available under The OEIS End-User License Agreement: http://oeis.org/LICENSE