# Greetings from The On-Line Encyclopedia of Integer Sequences! http://oeis.org/
Search: id:a257243
Showing 1-1 of 1
%I A257243 #9 Apr 21 2015 04:45:15
%S A257243 1,1,2,1,3,3,1,5,2,4,4,2,8,5,1,7,3,5,7,3,13,3,7,5,3,11,7,1,9,5,9,11,5,
%T A257243 21,8,2,12,4,6,10,4,18,4,10,6,4,14,12,2,16,8,14,18,8,34,5,11,9,5,19,9,
%U A257243 1,11,7,13,15,7,29,11,3,17,5,7,13,5,23,7,17
%N A257243 Tree R defined as the subtree of A257242 tree made of all shortest walks.
%C A257243 "In other words, we start from 1, with only child 1. Then, the (n-1) first rows being constructed, the n-th one is made of the nodes b such that, denoting by a their parent, the pair (a; b) did not already appear upper in the subtree (that is no row before the n-th one shows the pair(a; b)). The tree R is the restricted subtree of T."
%C A257243 "The sequence of labels in the tree R, read in breadth-first order is a beta-regular sequence, as defined by Allouche, Scheicher and Tichy, where here beta is the numeration system defined by the Fibonacci sequence."
%C A257243 The right diagonal is sequence A000045 (Fibonacci).
%H A257243 J.-P. Allouche, K. Scheicher and R. Tichy, Regular maps in generalized number systems, Math. Slovaca 50 (2000), 41-58.
%H A257243 B. Rittaud, On the Average Growth of Random Fibonacci Sequences, Journal of Integer Sequences, 10 (2007), Article 07.2.4.
%e A257243 Triangle starts:
%e A257243 1;
%e A257243 1;
%e A257243 2;
%e A257243 1, 3;
%e A257243 3, 1, 5;
%e A257243 2, 4, 4, 2, 8;
%e A257243 5, 1, 7, 3, 5, 7, 3, 13;
%e A257243 ...
%e A257243 Tree starts:
%e A257243 1
%e A257243 |
%e A257243 1
%e A257243 |
%e A257243 2--------------
%e A257243 | |
%e A257243 1 3---------
%e A257243 | | |
%e A257243 3----- 1 5-----
%e A257243 | | | | |
%e A257243 2 4---- 4---- 2 8----
%e A257243 | | | | | | | |
%e A257243 5 1 7 3 5 7 3 13
%o A257243 (PARI) printrow(row) = for (k=1, #row, if (row[k]>0, print1(row[k], ", "))); print();
%o A257243 dchild(a,b) = b-a;
%o A257243 schild(a,b) = b+a;
%o A257243 tablr(nn) = {printrow(prow = [1]); printrow(crow = [1]); nrow = vector(2); nrow[2] = schild(prow[1], crow[1]); printrow(nrow); for (n=4, nn, prow = crow; crow = nrow; nrow = vector(4*#prow); inew = 0; ichild = 0; for (inode=1, #prow, node = prow[inode]; child = crow[ichild++]; if (child > 0, nrow[inew++] = dchild(node, child); nrow[inew++] = schild(node, child), nrow[inew++] = -1; nrow[inew++] = -1); child = crow[ichild++]; if (child > 0, nrow[inew++] = dchild(node, child); nrow[inew++] = schild(node, child), nrow[inew++] = -1; nrow[inew++] = -1); ); printrow(nrow););}
%Y A257243 Cf. A000045, A257242.
%K A257243 nonn,tabf
%O A257243 1,3
%A A257243 _Michel Marcus_, Apr 19 2015
# Content is available under The OEIS End-User License Agreement: http://oeis.org/LICENSE