# Greetings from The On-Line Encyclopedia of Integer Sequences! http://oeis.org/
Search: id:a231829
Showing 1-1 of 1
%I A231829 #58 Nov 30 2022 11:20:27
%S A231829 1,3,3,6,13,6,10,40,40,10,15,108,213,108,15,21,275,1049,1049,275,21,
%T A231829 28,681,5034,9349,5034,681,28,36,1664,23984,80626,80626,23984,1664,36,
%U A231829 45,4040,114069,692194,1222363,692194,114069,4040,45
%N A231829 Square array read by antidiagonals: T(m,n) = number of ways of creating a closed, simple loop on an m X n rectangular lattice.
%C A231829 This sequence is read in a table, thus:
%C A231829 m ->
%C A231829 1, 3, 6, 10, …
%C A231829 n 3, 13, 40, …
%C A231829 | 6, 40, …
%C A231829 v 10, …
%C A231829 …
%C A231829 This sequence gives the number of closed, simple loops on a rectangular lattice of dots, where the edges of the loop can be horizontal or vertical.
%C A231829 This is also the number of solutions to an unclued slitherlink puzzle.
%C A231829 Main diagonal is A140517. - _Joerg Arndt_, Sep 01 2014
%C A231829 Equivalently, the number of cycles in the grid graph P_{m+1} X P_{n+1}. - _Andrew Howroyd_, Jun 12 2017
%H A231829 Douglas Boffey and Andrew Howroyd, Table of n, a(n) for n = 1..325 (terms 1..70 from Douglas Boffey)
%H A231829 Wikipedia, Slitherlink
%e A231829 Table starts:
%e A231829 =================================================================
%e A231829 m\n| 1 2 3 4 5 6 7
%e A231829 ---|-------------------------------------------------------------
%e A231829 1 | 1 3 6 10 15 21 28...
%e A231829 2 | 3 13 40 108 275 681 1664...
%e A231829 3 | 6 40 213 1049 5034 23984 114069...
%e A231829 4 | 10 108 1049 9349 80626 692194 5948291...
%e A231829 5 | 15 275 5034 80626 1222363 18438929 279285399...
%e A231829 6 | 21 681 23984 692194 18438929 487150371 12947640143...
%e A231829 7 | 28 1664 114069 5948291 279285399 12947640143 603841648931...
%e A231829 ... - _Andrew Howroyd_, Jun 12 2017
%e A231829 a(2,2) = 13, thus:
%e A231829 1) 2) 3) 4) 5)
%e A231829 +-+ + + +-+ + + + + + + +-+ +
%e A231829 | | | | | |
%e A231829 +-+ + + +-+ +-+ + + +-+ + + +
%e A231829 | | | | | |
%e A231829 + + + + + + +-+ + + +-+ +-+ +
%e A231829 6) 7) 8) 9) 10)
%e A231829 + +-+ +-+-+ + + + +-+ + + +-+
%e A231829 | | | | | | | |
%e A231829 + + + +-+-+ +-+-+ + +-+ +-+ +
%e A231829 | | | | | | | |
%e A231829 + +-+ + + + +-+-+ +-+-+ +-+-+
%e A231829 11) 12) 13)
%e A231829 +-+-+ +-+-+ +-+-+
%e A231829 | | | | | |
%e A231829 +-+ + + +-+ + + +
%e A231829 | | | | | |
%e A231829 + +-+ +-+ + +-+-+
%o A231829 (Python)
%o A231829 # Using graphillion
%o A231829 from graphillion import GraphSet
%o A231829 import graphillion.tutorial as tl
%o A231829 def A231829(n, k):
%o A231829 universe = tl.grid(n, k)
%o A231829 GraphSet.set_universe(universe)
%o A231829 cycles = GraphSet.cycles()
%o A231829 return cycles.len()
%o A231829 print([A231829(j + 1, i - j + 1) for i in range(9) for j in range(i + 1)]) # _Seiichi Manyama_, Nov 24 2020
%Y A231829 Rows 2..10 are A059020, A288637, A339117, A339118, A339119, A339120, A339121, A358707, A358785.
%Y A231829 Main diagonal is A140517.
%Y A231829 Cf. A288518, A003763, A222202.
%K A231829 nonn,tabl
%O A231829 1,2
%A A231829 _Douglas Boffey_, Nov 14 2013
# Content is available under The OEIS End-User License Agreement: http://oeis.org/LICENSE