# Greetings from The On-Line Encyclopedia of Integer Sequences! http://oeis.org/ Search: id:a231829 Showing 1-1 of 1 %I A231829 #58 Nov 30 2022 11:20:27 %S A231829 1,3,3,6,13,6,10,40,40,10,15,108,213,108,15,21,275,1049,1049,275,21, %T A231829 28,681,5034,9349,5034,681,28,36,1664,23984,80626,80626,23984,1664,36, %U A231829 45,4040,114069,692194,1222363,692194,114069,4040,45 %N A231829 Square array read by antidiagonals: T(m,n) = number of ways of creating a closed, simple loop on an m X n rectangular lattice. %C A231829 This sequence is read in a table, thus: %C A231829 m -> %C A231829 1, 3, 6, 10, … %C A231829 n 3, 13, 40, … %C A231829 | 6, 40, … %C A231829 v 10, … %C A231829 … %C A231829 This sequence gives the number of closed, simple loops on a rectangular lattice of dots, where the edges of the loop can be horizontal or vertical. %C A231829 This is also the number of solutions to an unclued slitherlink puzzle. %C A231829 Main diagonal is A140517. - _Joerg Arndt_, Sep 01 2014 %C A231829 Equivalently, the number of cycles in the grid graph P_{m+1} X P_{n+1}. - _Andrew Howroyd_, Jun 12 2017 %H A231829 Douglas Boffey and Andrew Howroyd, Table of n, a(n) for n = 1..325 (terms 1..70 from Douglas Boffey) %H A231829 Wikipedia, Slitherlink %e A231829 Table starts: %e A231829 ================================================================= %e A231829 m\n| 1 2 3 4 5 6 7 %e A231829 ---|------------------------------------------------------------- %e A231829 1 | 1 3 6 10 15 21 28... %e A231829 2 | 3 13 40 108 275 681 1664... %e A231829 3 | 6 40 213 1049 5034 23984 114069... %e A231829 4 | 10 108 1049 9349 80626 692194 5948291... %e A231829 5 | 15 275 5034 80626 1222363 18438929 279285399... %e A231829 6 | 21 681 23984 692194 18438929 487150371 12947640143... %e A231829 7 | 28 1664 114069 5948291 279285399 12947640143 603841648931... %e A231829 ... - _Andrew Howroyd_, Jun 12 2017 %e A231829 a(2,2) = 13, thus: %e A231829 1) 2) 3) 4) 5) %e A231829 +-+ + + +-+ + + + + + + +-+ + %e A231829 | | | | | | %e A231829 +-+ + + +-+ +-+ + + +-+ + + + %e A231829 | | | | | | %e A231829 + + + + + + +-+ + + +-+ +-+ + %e A231829 6) 7) 8) 9) 10) %e A231829 + +-+ +-+-+ + + + +-+ + + +-+ %e A231829 | | | | | | | | %e A231829 + + + +-+-+ +-+-+ + +-+ +-+ + %e A231829 | | | | | | | | %e A231829 + +-+ + + + +-+-+ +-+-+ +-+-+ %e A231829 11) 12) 13) %e A231829 +-+-+ +-+-+ +-+-+ %e A231829 | | | | | | %e A231829 +-+ + + +-+ + + + %e A231829 | | | | | | %e A231829 + +-+ +-+ + +-+-+ %o A231829 (Python) %o A231829 # Using graphillion %o A231829 from graphillion import GraphSet %o A231829 import graphillion.tutorial as tl %o A231829 def A231829(n, k): %o A231829 universe = tl.grid(n, k) %o A231829 GraphSet.set_universe(universe) %o A231829 cycles = GraphSet.cycles() %o A231829 return cycles.len() %o A231829 print([A231829(j + 1, i - j + 1) for i in range(9) for j in range(i + 1)]) # _Seiichi Manyama_, Nov 24 2020 %Y A231829 Rows 2..10 are A059020, A288637, A339117, A339118, A339119, A339120, A339121, A358707, A358785. %Y A231829 Main diagonal is A140517. %Y A231829 Cf. A288518, A003763, A222202. %K A231829 nonn,tabl %O A231829 1,2 %A A231829 _Douglas Boffey_, Nov 14 2013 # Content is available under The OEIS End-User License Agreement: http://oeis.org/LICENSE