# Greetings from The On-Line Encyclopedia of Integer Sequences! http://oeis.org/ Search: id:a223499 Showing 1-1 of 1 %I A223499 #8 Aug 21 2018 05:54:40 %S A223499 9,115,1519,20115,266419,3528715,46737819,619042315,8199214219, %T A223499 108598575915,1438387920619,19051445129515,252336352607019, %U A223499 3342194485203115,44267359266773419,586321084882796715 %N A223499 Petersen graph (3,1) coloring a rectangular array: number of n X 3 0..5 arrays where 0..5 label nodes of a graph with edges 0,1 0,3 3,5 3,4 1,2 1,4 4,5 2,0 2,5 and every array movement to a horizontal, diagonal or antidiagonal neighbor moves along an edge of this graph, with the array starting at 0. %C A223499 Column 3 of A223504. %H A223499 R. H. Hardin, Table of n, a(n) for n = 1..210 %F A223499 Empirical: a(n) = 15*a(n-1) - 24*a(n-2) + 10*a(n-3). %F A223499 Conjectures from _Colin Barker_, Aug 21 2018: (Start) %F A223499 G.f.: x*(9 - 20*x + 10*x^2) / ((1 - x)*(1 - 14*x + 10*x^2)). %F A223499 a(n) = (13 + (13-2*sqrt(39))*(7-sqrt(39))^n + (7+sqrt(39))^n*(13+2*sqrt(39))) / 39. %F A223499 (End) %e A223499 Some solutions for n=3: %e A223499 ..0..1..4....0..3..4....0..1..4....0..2..5....0..1..4....0..3..4....0..3..0 %e A223499 ..0..3..0....4..3..5....2..1..0....0..3..0....4..3..0....4..3..4....4..3..0 %e A223499 ..5..2..5....5..3..4....4..1..4....0..1..0....0..3..4....5..3..4....5..3..0 %Y A223499 Cf. A223504. %K A223499 nonn %O A223499 1,1 %A A223499 _R. H. Hardin_, Mar 21 2013 # Content is available under The OEIS End-User License Agreement: http://oeis.org/LICENSE