# Greetings from The On-Line Encyclopedia of Integer Sequences! http://oeis.org/ Search: id:a228707 Showing 1-1 of 1 %I A228707 #14 Sep 08 2022 08:46:05 %S A228707 1,1,1,3,6,8,10,16,24,29,35,47,61,72,84,104,127,145,165,195,228,256, %T A228707 286,328,374,413,455,511,571,624,680,752,829,897,969,1059,1154,1240, %U A228707 1330,1440,1556,1661,1771,1903,2041,2168,2300,2456,2619,2769 %N A228707 G.f.: (1-3*x+5*x^2-5*x^3+5*x^4-5*x^5+5*x^6-3*x^7+x^8)/((1-x)^4*(1+x^4)*(1+x^2)^2). %H A228707 Vincenzo Librandi, Table of n, a(n) for n = 0..1000 %H A228707 E. Kirkman, J. Kuzmanovich and J. J. Zhang, Invariants of (-1)-Skew Polynomial Rings under Permutation Representations, arXiv preprint arXiv:1305.3973, 2013 %F A228707 G.f.: (1-x+x^2)*(1-2 *x+2*x^2-x^3+2*x^4-2*x^5+x^6)/((1+x^2)^2*(1-x)^4*(1+x^4)). %t A228707 CoefficientList[Series[(1 - 3 x + 5 x^2 - 5 x^3 + 5 x^4 - 5 x^5 + 5 x^6 - 3 x^7 + x^8) / ((1 - x)^4 (1 + x^4) (1 + x^2)^2), {x, 0, 50}],x] (* _Vincenzo Librandi_, Sep 07 2013 *) %o A228707 (Magma) m:=50; R:=PowerSeriesRing(Integers(), m); Coefficients(R!((1-3*x+5*x^2-5*x^3+5*x^4-5*x^5+5*x^6-3*x^7+x^8)/((1-x)^4*(1+x^4)*(1+x^2)^2))); // _Vincenzo Librandi_, Sep 07 2013 %Y A228707 Cf. A032279, A228706. %K A228707 nonn,easy %O A228707 0,4 %A A228707 _N. J. A. Sloane_, Sep 06 2013 # Content is available under The OEIS End-User License Agreement: http://oeis.org/LICENSE