# Greetings from The On-Line Encyclopedia of Integer Sequences! http://oeis.org/ Search: id:a226388 Showing 1-1 of 1 %I A226388 #23 Jul 04 2021 15:02:30 %S A226388 0,0,1,2,9,24,265,720,11025,62720,965601,3628800,130478425,479001600, %T A226388 19151042625,191132125184,4108830350625,20922789888000, %U A226388 1448301616386625,6402373705728000,466136852576275881,5675242696048640000,193688172394325870625,1124000727777607680000 %N A226388 Number of n-permutations such that all cycle lengths have a common divisor >= 2. %C A226388 a(p) = (p-1)! for p a prime. %H A226388 Alois P. Heinz, Table of n, a(n) for n = 0..200 %F A226388 a(n) = n! - A079128(n) for n >= 1. - _Alois P. Heinz_, Jul 04 2021 %e A226388 a(6) = 265 counting permutations with cycle types: 6; 4-2; 3-3; 2-2-2; of which there are 120 + 90 + 40 + 15 = 265. %p A226388 with(combinat): %p A226388 b:= proc(n, i, g) option remember; `if`(n=0, `if`(g>1, 1, 0), %p A226388 `if`(i<2, 0, b(n, i-1, g) +`if`(igcd(g, i)<2, 0, %p A226388 add((i-1)!^j/j! *multinomial(n, i$j, n-i*j)* %p A226388 b(n-i*j, i-1, igcd(i, g)), j=1..n/i)))) %p A226388 end: %p A226388 a:= n-> b(n, n, 0): %p A226388 seq(a(n), n=0..30); # _Alois P. Heinz_, Jun 06 2013 %p A226388 # second Maple program: %p A226388 b:= proc(n, g) option remember; `if`(n=0, `if`(g>1, 1, 0), add( %p A226388 (j-1)!*b(n-j, igcd(g, j))*binomial(n-1, j-1), j=1..n)) %p A226388 end: %p A226388 a:= n-> b(n, 0): %p A226388 seq(a(n), n=0..30); # _Alois P. Heinz_, Jul 04 2021 %t A226388 f[list_] := %t A226388 Total[list]!/Apply[Times, Table[list[[i]], {i, 1, Length[list]}]]/ %t A226388 Apply[Times, %t A226388 Select[Table[ %t A226388 Count[list, i], {i, 1, Total[list]}], # > 0 &]!]; Table[ %t A226388 Total[Map[f, Select[Partitions[n], Apply[GCD, #] > 1 &]]], {n, 0, %t A226388 25}] %Y A226388 Cf. A000142, A079128, A335088. %K A226388 nonn %O A226388 0,4 %A A226388 _Geoffrey Critzer_, Jun 05 2013 # Content is available under The OEIS End-User License Agreement: http://oeis.org/LICENSE