# Greetings from The On-Line Encyclopedia of Integer Sequences! http://oeis.org/ Search: id:a211661 Showing 1-1 of 1 %I A211661 #8 Mar 08 2020 19:46:33 %S A211661 1,1,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,2,3,3,3,3,3,3,3,3, %T A211661 3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3, %U A211661 3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3,3 %N A211661 Number of iterations log_3(log_3(log_3(...(n)...))) such that the result is < 1. %C A211661 For n<16 same as A211663. %F A211661 With the exponentiation definition E_{i=1..n} c(i) := c(1)^(c(2)^(c(3)^(...(c(n-1)^(c(n))))...))); E_{i=1..0} := 1; example: E_{i=1..4} 3 = 3^(3^(3^3)) = 3^(3^27), we get: %F A211661 a(E_{i=1..n} 3) = a(E_{i=1..n-1} 3)+1, for n>=1. %F A211661 G.f.: g(x)= 1/(1-x)*sum_{k=0..infinity} x^(E_{i=1..k} 3). The explicit first terms of the g.f. are %F A211661 g(x)=(x+x^3+x^27+x^7625597484987+…)/(1-x). %e A211661 a(n)=1, 2, 3, 4, 5 for n=1, 3, 3^3, 3^3^3, 3^3^3^3 =1, 3, 27, 7625597484987, 3^7625597484987 %t A211661 Table[Length[NestWhileList[Log[3,#]&,n,#>=1&]],{n,90}]-1 (* _Harvey P. Dale_, Mar 08 2020 *) %Y A211661 Cf. A001069, A010096, A211664, A211666, A211668, A211669. %K A211661 base,nonn %O A211661 1,3 %A A211661 _Hieronymus Fischer_, Apr 30 2012 # Content is available under The OEIS End-User License Agreement: http://oeis.org/LICENSE