# Greetings from The On-Line Encyclopedia of Integer Sequences! http://oeis.org/ Search: id:a218725 Showing 1-1 of 1 %I A218725 #25 Aug 29 2024 17:03:34 %S A218725 0,1,23,507,11155,245411,5399043,118778947,2613136835,57489010371, %T A218725 1264758228163,27824681019587,612142982430915,13467145613480131, %U A218725 296277203496562883,6518098476924383427,143398166492336435395,3154759662831401578691,69404712582290834731203 %N A218725 a(n) = (22^n - 1)/21. %C A218725 Partial sums of powers of 22; q-integers for q=22: Diagonal k=1 in the triangle A022186. %C A218725 Partial sums are in A014907. Also, the sequence is related to A014940 by A014940(n) = n*a(n) - Sum_{i=0..n-1} a(i) for n > 0. [_Bruno Berselli_, Nov 06 2012] %H A218725 Vincenzo Librandi, Table of n, a(n) for n = 0..700 %H A218725 Index entries related to partial sums. %H A218725 Index entries for linear recurrences with constant coefficients, signature (23,-22). %F A218725 a(n) = floor(22^n/21). %F A218725 G.f.: x/((1-x)*(1-22*x)). [_Bruno Berselli_, Nov 06 2012] %F A218725 a(n) = 23*a(n-1) - 22*a(n-2). - _Vincenzo Librandi_, Nov 07 2012 %F A218725 E.g.f.: exp(x)*(exp(21*x) - 1)/21. - _Elmo R. Oliveira_, Aug 29 2024 %t A218725 LinearRecurrence[{23, -22}, {0, 1}, 30] (* _Vincenzo Librandi_, Nov 07 2012 *) %o A218725 (PARI) A218725(n)=22^n\21 %o A218725 (Maxima) A218725(n):=(22^n-1)/21$ makelist(A218725(n),n,0,30); /* _Martin Ettl_, Nov 06 2012 */ %o A218725 (Magma) [n le 2 select n-1 else 23*Self(n-1) - 22*Self(n-2): n in [1..20]]; // _Vincenzo Librandi_, Nov 07 2012 %Y A218725 Cf. similar sequences of the form (k^n-1)/(k-1): A000225, A003462, A002450, A003463, A003464, A023000, A023001, A002452, A002275, A016123, A016125, A091030, A135519, A135518, A131865, A091045, A218721, A218722, A064108, A218724-A218734, A132469, A218736-A218753, A133853, A094028, A218723. %Y A218725 Cf. A014907, A014940, A022186. %K A218725 nonn,easy %O A218725 0,3 %A A218725 _M. F. Hasler_, Nov 04 2012 # Content is available under The OEIS End-User License Agreement: http://oeis.org/LICENSE