# Greetings from The On-Line Encyclopedia of Integer Sequences! http://oeis.org/ Search: id:a217565 Showing 1-1 of 1 %I A217565 #41 Aug 23 2021 08:36:44 %S A217565 33581,673,571,1987,915199,441799,2115761,961943,15406687,77123341, %T A217565 4098427,5526679,54560189,22291639,371594479,126499693,229299227, %U A217565 103196347,37851677,1198387109,801422893,966240103,281430131,926679973,154019941,196449137,243985993 %N A217565 The smallest prime p that with its successor q gives prime counts of all ten base-10 digits for the expression (q^prime(n))*(p^prime(n+1)). %C A217565 This reverses the idea for A217049, with the smaller of successive primes being raised to the larger prime power. See that sequence for motivation. %e A217565 (677^3)*(673^5) is the value corresponding to a(2). What this means is that the decimal representation of this number has a prime number of copies of each digit and no pair of successive primes in the same order and smaller than {673,677} has the same characteristic. %t A217565 Table[p=2;While[!And@@PrimeQ[DigitCount[(p^Prime[n+1])*(NextPrime@p^Prime[n])]],p=NextPrime@p];p,{n,6}] (* _Giorgos Kalogeropoulos_, Aug 18 2021 *) %o A217565 (Python) %o A217565 from sympy import isprime, nextprime, prime %o A217565 from sympy.ntheory import count_digits %o A217565 def a(n): %o A217565 pn = prime(n); qn = nextprime(pn) %o A217565 p, q = 2, 3; c = count_digits((q**pn)*(p**qn)) %o A217565 while not all(isprime(c[i]) for i in range(10)): %o A217565 p, q = q, nextprime(q); c = count_digits((q**pn)*(p**qn)) %o A217565 return p %o A217565 print([a(n) for n in range(1, 7)]) # _Michael S. Branicky_, Aug 21 2021 %Y A217565 Cf. A217049. %K A217565 nonn,base %O A217565 1,1 %A A217565 _James G. Merickel_, Oct 06 2012 %E A217565 a(15) added by _James G. Merickel_, Oct 17 2012 %E A217565 Name clarified by _Tanya Khovanova_, Aug 17 2021 %E A217565 a(16)-a(20) added by _Giorgos Kalogeropoulos_, Aug 18 2021 %E A217565 a(21)-a(27) from _Michael S. Branicky_, Aug 22 2021 # Content is available under The OEIS End-User License Agreement: http://oeis.org/LICENSE