# Greetings from The On-Line Encyclopedia of Integer Sequences! http://oeis.org/
Search: id:a215493
Showing 1-1 of 1
%I A215493 #38 Sep 08 2022 08:46:03
%S A215493 0,1,4,14,49,175,637,2352,8771,32928,124166,469567,1779141,6749211,
%T A215493 25623472,97329337,369821228,1405502182,5342323441,20307982135,
%U A215493 77201862045,293497548512,1115812645899,4242135876440,16128056932078,61317184775679,233122447515741
%N A215493 a(n) = 7*a(n-1) - 14*a(n-2) + 7*a(n-3) with a(0)=0, a(1)=1, a(2)=4.
%C A215493 The Berndt-type sequence number 4 for the argument 2Pi/7 - see also A215007, A215008, A215143 and A215494.
%C A215493 We have a(n)=A079309(n) for n=1..6, and A079309(7)-a(7)=1.
%H A215493 G. C. Greubel, Table of n, a(n) for n = 0..1000
%H A215493 B. C. Berndt, A. Zaharescu, Finite trigonometric sums and class numbers, Math. Ann. 330 (2004), 551-575.
%H A215493 B. C. Berndt, L.-C. Zhang, Ramanujan's identities for eta-functions, Math. Ann. 292 (1992), 561-573.
%H A215493 Z.-G. Liu, Some Eisenstein series identities related to modular equations of the seventh order, Pacific J. Math. 209 (2003), 103-130.
%H A215493 Roman Witula and Damian Slota, New Ramanujan-Type Formulas and Quasi-Fibonacci Numbers of Order 7, Journal of Integer Sequences, Vol. 10 (2007), Article 07.5.6
%H A215493 Index entries for linear recurrences with constant coefficients, signature (7,-14,7).
%F A215493 a(n)*sqrt(7) = s(1)^(2n-1) + s(2)^(2n-1) + s(4)^(2n-1), where s(j) := 2*Sin(2*Pi*j/7) (for the sums of the respective even powers see A215494, see also A094429, A115146). For the proof of these formula see Witula-Slota's paper.
%F A215493 G.f.: x*(1-3*x)/(1-7*x+14*x^2-7*x^3).
%F A215493 a(n) = A275830(2*n-1)/(7^n). - _Kai Wang_, May 25 2017
%t A215493 LinearRecurrence[{7,-14,7}, {0,1,4}, 50]
%o A215493 (PARI) x='x+O('x^30); concat([0], Vec(x*(1-3*x)/(1-7*x+14*x^2-7*x^3))) \\ _G. C. Greubel_, Apr 23 2018
%o A215493 (Magma) I:=[0,1,4]; [n le 3 select I[n] else 7*Self(n-1) - 14*Self(n-2) +7*Self(n-3): n in [1..30]]; // _G. C. Greubel_, Apr 23 2018
%K A215493 nonn,easy
%O A215493 0,3
%A A215493 _Roman Witula_, Aug 13 2012
# Content is available under The OEIS End-User License Agreement: http://oeis.org/LICENSE