# Greetings from The On-Line Encyclopedia of Integer Sequences! http://oeis.org/ Search: id:a214997 Showing 1-1 of 1 %I A214997 #32 Oct 28 2024 02:00:53 %S A214997 4,13,45,153,523,1785,6095,20809,71047,242569,828183,2827593,9654007, %T A214997 32960841,112535351,384219721,1311808183,4478793289,15291556791, %U A214997 52208640585,178251448759,608588513865,2077851157943,7094227604041,24221208100279,82696377193033 %N A214997 Power ceiling-floor sequence of 2+sqrt(2). %C A214997 See A214992 for a discussion of power ceiling-floor sequence and power ceiling-floor function, p3(x) = limit of a(n,x)/x^n. The present sequence is a(n,r), where r = 2+sqrt(2), and the limit p3(r) = 3.8478612632206289... %C A214997 a(n) is the number of words over {0,1,2,3} of length n+1 that avoid 23, 32, and 33. As an example, a(2)=45 corresponds to the 45 such words of length 3; these are all 64 words except for the 19 prohibited cases which are 320, 321, 322, 323, 230, 231, 232, 233, 330, 331, 332, 333, 023, 123, 223, 032, 132, 033, 133. - _Greg Dresden_ and _Mina BH Arsanious_, Aug 09 2023 %H A214997 Clark Kimberling, Table of n, a(n) for n = 0..250 %H A214997 Index entries for linear recurrences with constant coefficients, signature (3,2,-2). %F A214997 a(n) = floor(x*a(n-1)) if n is odd, a(n) = ceiling(x*a(n-1)) if n is even, where x = 2+sqrt(2) and a(0) = ceiling(x). %F A214997 a(n) = 3*a(n-1) + 2*a(n-2) - 2*a(n-3). %F A214997 G.f.: (4 + x - 2*x^2)/(1 - 3*x - 2*x^2 + 2*x^3). %F A214997 a(n) = (1/14)*(2*(-1)^n + (27-19*sqrt(2))*(2-sqrt(2))^n + (2+sqrt(2))^n*(27+19*sqrt(2))). - _Colin Barker_, Nov 13 2017 %e A214997 a(0) = ceiling(r) = 4, where r = 2+sqrt(2); %e A214997 a(1) = floor(4*r) = 13; a(2) = ceiling(13*r) = 45. %t A214997 (See A214996.) %t A214997 CoefficientList[Series[(4+x-2*x^2)/(1-3*x-2*x^2+2*x^3), {x,0,50}], x] (* _G. C. Greubel_, Feb 01 2018 *) %o A214997 (PARI) Vec((4 + x - 2*x^2) / ((1 + x)*(1 - 4*x + 2*x^2)) + O(x^40)) \\ _Colin Barker_, Nov 13 2017 %o A214997 (Magma) Q:=Rationals(); R:=PowerSeriesRing(Q, 40); Coefficients(R!((4 +x-2*x^2)/(1-3*x-2*x^2+2*x^3))) // _G. C. Greubel_, Feb 01 2018 %Y A214997 Cf. A214992, A007052, A214996, A007070. %K A214997 nonn,easy %O A214997 0,1 %A A214997 _Clark Kimberling_, Nov 10 2012 # Content is available under The OEIS End-User License Agreement: http://oeis.org/LICENSE