# Greetings from The On-Line Encyclopedia of Integer Sequences! http://oeis.org/ Search: id:a205959 Showing 1-1 of 1 %I A205959 #46 Jul 19 2023 05:35:16 %S A205959 1,1,1,2,1,6,1,4,3,10,1,24,1,14,15,8,1,54,1,40,21,22,1,96,5,26,9,56,1, %T A205959 900,1,16,33,34,35,216,1,38,39,160,1,1764,1,88,135,46,1,384,7,250,51, %U A205959 104,1,486,55,224,57,58,1,7200,1,62,189,32,65,4356,1,136 %N A205959 a(n) = n^omega(n)/rad(n). %C A205959 a(n) = exp(-Sum_{d in P} moebius(d)*log(n/d)) where P = {d : d divides n and d is prime}. This is a variant of the (exponential of the) von Mangoldt function where the divisors are restricted to prime divisors. The (exponential of the) summatory function is A205957. Apart from n=1 the value is 1 if and only if n is prime; the fixed points are the products of two distinct primes (A006881). %H A205959 Reinhard Zumkeller, Table of n, a(n) for n = 1..10000 %H A205959 Peter Luschny, The von Mangoldt Transformation. %F A205959 a(n) = Product_{p|n} n/p. - _Charles R Greathouse IV_, Jun 27 2013 %F A205959 a(n) = Product_{k=1..A001221(n)} n/A027748(n,k). - _Reinhard Zumkeller_, Dec 15 2013 %F A205959 If n is squarefree, then a(n) = n^(omega(n)-1). - _Wesley Ivan Hurt_, Jun 09 2020 %F A205959 a(p^e) = p^(e-1) for p prime, e > 0. - _Bernard Schott_, Jun 09 2020 %p A205959 with(numtheory): A205959 := proc(n) select(isprime, divisors(n)); %p A205959 simplify(exp(-add(mobius(d)*log(n/d), d=%))) end: %p A205959 # Alternative: %p A205959 a := n -> local p; mul(n/p[1], p in ifactors(n)[2]): %p A205959 seq(a(n), n = 1..68); # _Peter Luschny_, Jul 19 2023 %t A205959 a[n_] := Exp[-Sum[ MoebiusMu[d]*Log[n/d], {d, FactorInteger[n][[All, 1]]}]]; Table[a[n], {n, 1, 68}] (* _Jean-François Alcover_, Jan 15 2013 *) %o A205959 (Sage) %o A205959 def A205959(n) : %o A205959 P = filter(is_prime, divisors(n)) %o A205959 return simplify(exp(-add(moebius(d)*log(n/d) for d in P))) %o A205959 [A205959(n) for n in (1..60)] %o A205959 (PARI) a(n)=my(f=factor(n)[,1]);prod(i=1,#f,n/f[i]) \\ _Charles R Greathouse IV_, Jun 27 2013 %o A205959 (Haskell) %o A205959 a205959 n = product $ map (div n) $ a027748_row n %o A205959 -- _Reinhard Zumkeller_, Dec 15 2013 %o A205959 (Python) %o A205959 from math import prod %o A205959 from sympy import primefactors %o A205959 def A205959(n): return prod(n//p for p in primefactors(n)) # _Chai Wah Wu_, Jul 12 2023 %Y A205959 Cf. A003418, A025527, A008578, A102467, A006881, A205957. %K A205959 nonn,nice %O A205959 1,4 %A A205959 _Peter Luschny_, Feb 03 2012 %E A205959 New name from _Charles R Greathouse IV_, Jun 30 2013 # Content is available under The OEIS End-User License Agreement: http://oeis.org/LICENSE