# Greetings from The On-Line Encyclopedia of Integer Sequences! http://oeis.org/ Search: id:a204002 Showing 1-1 of 1 %I A204002 #5 Mar 30 2012 18:58:07 %S A204002 3,4,4,5,6,5,6,7,7,6,7,8,9,8,7,8,9,10,10,9,8,9,10,11,12,11,10,9,10,11, %T A204002 12,13,13,12,11,10,11,12,13,14,15,14,13,12,11,12,13,14,15,16,16,15,14, %U A204002 13,12,13,14,15,16,17,18,17,16,15,14,13,14,15,16,17,18,19,19 %N A204002 Symmetric matrix based on f(i,j)=min{2i+j,i+2j}, by antidiagonals. %C A204002 A204002 represents the matrix M given by f(i,j)=min{2i+j,i+2j}for i>=1 and j>=1. See A204003 for characteristic polynomials of principal submatrices of M, with interlacing zeros. %e A204002 Northwest corner: %e A204002 3...4...5....6....7....8 %e A204002 4...6...7....8....9....10 %e A204002 5...7...9....10...11...12 %e A204002 6...8...10...12...13...14 %t A204002 f[i_, j_] := Min[2 i + j, 2 j + i]; %t A204002 m[n_] := Table[f[i, j], {i, 1, n}, {j, 1, n}] %t A204002 TableForm[m[6]] (* 6x6 principal submatrix *) %t A204002 Flatten[Table[f[i, n + 1 - i], %t A204002 {n, 1, 12}, {i, 1, n}]] (* A204002 *) %t A204002 p[n_] := CharacteristicPolynomial[m[n], x]; %t A204002 c[n_] := CoefficientList[p[n], x] %t A204002 TableForm[Flatten[Table[p[n], {n, 1, 10}]]] %t A204002 Table[c[n], {n, 1, 12}] %t A204002 Flatten[%] (* A204003 *) %t A204002 TableForm[Table[c[n], {n, 1, 10}]] %Y A204002 Cf. A204003, A202453. %K A204002 nonn,tabl %O A204002 1,1 %A A204002 _Clark Kimberling_, Jan 09 2012 # Content is available under The OEIS End-User License Agreement: http://oeis.org/LICENSE