# Greetings from The On-Line Encyclopedia of Integer Sequences! http://oeis.org/ Search: id:a192780 Showing 1-1 of 1 %I A192780 #10 Nov 07 2021 18:02:17 %S A192780 1,0,1,1,2,5,8,19,34,71,137,272,537,1056,2089,4112,8121,16009,31586, %T A192780 62301,122888,242411,478146,943183,1860433,3669792,7238769,14278720, %U A192780 28165265,55556896,109587889,216165713,426394178,841076725,1659052040 %N A192780 Constant term in the reduction of the n-th Fibonacci polynomial by x^3->x^2+1. See Comments. %C A192780 For discussions of polynomial reduction, see A192232 and A192744. %H A192780 Index entries for linear recurrences with constant coefficients, signature (1,3,-1,-3,1,1). %F A192780 a(n)=a(n-1)+3*a(n-2)-a(n-3)-3*a(n-4)+a(n-5)+a(n-6). %F A192780 G.f.: -x*(x-1)*(1+x)*(x^2+x-1) / ( -1+x+3*x^2-x^3-3*x^4+x^5+x^6 ). - _R. J. Mathar_, May 06 2014 %e A192780 The first five polynomials p(n,x) and their reductions: %e A192780 F1(x)=1 -> 1 %e A192780 F2(x)=x -> x %e A192780 F3(x)=x^2+1 -> x^2+1 %e A192780 F4(x)=x^3+2x -> x^2+2x+1 %e A192780 F5(x)=x^4+3x^2+1 -> 4x^2+1x+2, so that %e A192780 A192777=(1,0,1,1,2,...), A192778=(0,1,0,2,1,...), A192779=(0,0,1,1,4,...) %t A192780 q = x^3; s = x^2 + 1; z = 40; %t A192780 p[n_, x_] := Fibonacci[n, x]; %t A192780 Table[Expand[p[n, x]], {n, 1, 7}] %t A192780 reduce[{p1_, q_, s_, x_}] := %t A192780 FixedPoint[(s PolynomialQuotient @@ #1 + %t A192780 PolynomialRemainder @@ #1 &)[{#1, q, x}] &, p1] %t A192780 t = Table[reduce[{p[n, x], q, s, x}], {n, 1, z}]; %t A192780 u1 = Table[Coefficient[Part[t, n], x, 0], {n, 1, z}] %t A192780 (* A192780 *) %t A192780 u2 = Table[Coefficient[Part[t, n], x, 1], {n, 1, z}] %t A192780 (* A192781 *) %t A192780 u3 = Table[Coefficient[Part[t, n], x, 2], {n, 1, z}] %t A192780 (* A192782 *) %t A192780 LinearRecurrence[{1,3,-1,-3,1,1},{1,0,1,1,2,5},40] (* _Harvey P. Dale_, Nov 07 2021 *) %Y A192780 Cf. A192744, A192232, A192616, A192781, A192782. %K A192780 nonn %O A192780 1,5 %A A192780 _Clark Kimberling_, Jul 09 2011 # Content is available under The OEIS End-User License Agreement: http://oeis.org/LICENSE