# Greetings from The On-Line Encyclopedia of Integer Sequences! http://oeis.org/ Search: id:a192426 Showing 1-1 of 1 %I A192426 #21 Jul 14 2023 09:04:46 %S A192426 2,0,5,1,18,13,81,106,413,729,2258,4653,12833,28666,74493,173545, %T A192426 437346,1041421,2583089,6221322,15304541,37079289,90826994,220729069, %U A192426 539487297,1313161498,3205831869,7809748489,19054635650,46439068365 %N A192426 Constant term of the reduction by x^2 -> x+1 of the polynomial p(n,x) defined below in Comments. %C A192426 The polynomial p(n,x) is defined by ((x+d)/2)^n + ((x-d)/2)^n, where d = sqrt(x^2+8). For an introduction to reductions of polynomials by substitutions such as x^2 -> x+1, see A192232. %H A192426 G. C. Greubel, Table of n, a(n) for n = 0..1000 %H A192426 Index entries for linear recurrences with constant coefficients, signature (1,5,-2,-4). %F A192426 From _Colin Barker_, May 12 2014: (Start) %F A192426 a(n) = a(n-1) + 5*a(n-2) - 2*a(n-3) - 4*a(n-4). %F A192426 G.f.: (2-2*x-5*x^2)/(1-x-5*x^2+2*x^3+4*x^4). (End) %F A192426 a(n) = Sum_{k=0..n} T(n, k)*Fibonacci(k-1), where T(n, k) = [x^k] ((x + sqrt(x^2+8))^n + (x - sqrt(x^2+8))^n)/2^n. - _G. C. Greubel_, Jul 12 2023 %e A192426 The first five polynomials p(n,x) and their reductions are as follows: %e A192426 p(0,x) = 2 -> 2 %e A192426 p(1,x) = x -> x %e A192426 p(2,x) = 4 + x^2 -> 5 + x %e A192426 p(3,x) = 6*x + x^3 -> 1 + 8*x %e A192426 p(4,x) = 8 + 8*x^2 + x^4 -> 18 + 11*x. %e A192426 From these, read a(n) = (2, 0, 5, 1, 18, ...) and A192427 = (0, 1, 1, 8, 11, ...). %t A192426 q[x_]:= x+1; d= Sqrt[x^2+8]; %t A192426 p[n_, x_]:= ((x+d)/2)^n + ((x-d)/2)^n (* suggested by A162514 *) %t A192426 Table[Expand[p[n, x]], {n, 0, 6}] %t A192426 reductionRules = {x^y_?EvenQ -> q[x]^(y/2), x^y_?OddQ -> x q[x]^((y - 1)/2)}; %t A192426 t= Table[FixedPoint[Expand[#1/. reductionRules] &, p[n,x]], {n,0,30}] %t A192426 Table[Coefficient[Part[t, n], x, 0], {n,30}] (* A192426 *) %t A192426 Table[Coefficient[Part[t, n], x, 1], {n,30}] (* A192427 *) %t A192426 LinearRecurrence[{1,5,-2,-4}, {2,0,5,1}, 40] (* _G. C. Greubel_, Jul 12 2023 *) %o A192426 (Magma) R:=PowerSeriesRing(Integers(), 40); Coefficients(R!( (2-2*x-5*x^2)/(1-x-5*x^2+2*x^3+4*x^4) )); // _G. C. Greubel_, Jul 12 2023 %o A192426 (SageMath) %o A192426 @CachedFunction %o A192426 def a(n): # a = A192426 %o A192426 if (n<4): return (2,0,5,1)[n] %o A192426 else: return a(n-1) + 5*a(n-2) - 2*a(n-3) - 4*a(n-4) %o A192426 [a(n) for n in range(41)] # _G. C. Greubel_, Jul 12 2023 %Y A192426 Cf. A000045, A162514, A192232, A192427. %K A192426 nonn,easy %O A192426 0,1 %A A192426 _Clark Kimberling_, Jun 30 2011 %E A192426 Typo in name corrected by _G. C. Greubel_, Jul 12 2023 # Content is available under The OEIS End-User License Agreement: http://oeis.org/LICENSE