# Greetings from The On-Line Encyclopedia of Integer Sequences! http://oeis.org/ Search: id:a199966 Showing 1-1 of 1 %I A199966 #13 Jun 24 2018 08:57:32 %S A199966 2,3,7,8,1,2,8,1,6,8,6,7,3,7,6,7,9,8,5,9,6,8,2,0,1,6,6,1,4,7,2,8,8,6, %T A199966 2,1,5,3,6,6,2,9,9,9,1,5,8,9,3,5,4,1,0,0,2,2,0,8,2,0,2,7,0,8,1,3,7,4, %U A199966 7,2,2,3,6,2,6,6,4,9,9,0,1,2,4,6,4,8,9,3,9,4,0,0,3,4,4,9,9,2,7 %N A199966 Decimal expansion of greatest x satisfying x^2 + 4*cos(x) = 4*sin(x). %C A199966 See A199949 for a guide to related sequences. The Mathematica program includes a graph. %H A199966 G. C. Greubel, Table of n, a(n) for n = 1..10000 %e A199966 least x: 0.943379571591794622084167020515639838... %e A199966 greatest x: 2.3781281686737679859682016614728862... %t A199966 a = 1; b = 4; c = 4; %t A199966 f[x_] := a*x^2 + b*Cos[x]; g[x_] := c*Sin[x] %t A199966 Plot[{f[x], g[x]}, {x, -1, 3}, {AxesOrigin -> {0, 0}}] %t A199966 r = x /. FindRoot[f[x] == g[x], {x, .94, .95}, WorkingPrecision -> 110] %t A199966 RealDigits[r] (* A199965 *) %t A199966 r = x /. FindRoot[f[x] == g[x], {x, 2.37, 2.38}, WorkingPrecision -> 110] %t A199966 RealDigits[r] (* A199966 *) %o A199966 (PARI) a=1; b=4; c=4; solve(x=2, 3, a*x^2 + b*cos(x) - c*sin(x)) \\ _G. C. Greubel_, Jun 23 2018 %Y A199966 Cf. A199949. %K A199966 nonn,cons %O A199966 1,1 %A A199966 _Clark Kimberling_, Nov 12 2011 # Content is available under The OEIS End-User License Agreement: http://oeis.org/LICENSE