# Greetings from The On-Line Encyclopedia of Integer Sequences! http://oeis.org/ Search: id:a199592 Showing 1-1 of 1 %I A199592 #17 Oct 03 2022 04:19:32 %S A199592 12,122,14642,214358882,45949729863572162, %T A199592 2111377674535255285545615254209922, %U A199592 4457915684525902395869512133369841539490161434991526715513934826242 %N A199592 Generalized Fermat numbers: 11^(2^n) + 1, n >= 0. %H A199592 Arkadiusz Wesolowski, Table of n, a(n) for n = 0..11 %H A199592 Anders Björn and Hans Riesel, Factors of Generalized Fermat Numbers, Mathematics of Computation, Vol. 67, No. 221, Jan., 1998, pp. 441-446. %H A199592 Eric Weisstein's World of Mathematics, Generalized Fermat Number. %H A199592 OEIS Wiki, Generalized Fermat numbers. %F A199592 a(0) = 12; a(n) = (a(n-1)-1)^2 + 1, n >= 1. %F A199592 a(0) = 12, a(1) = 122; a(n) = a(n-1) + 10*11^(2^(n-1))*Product_{i=0..n-2} a(i), n >= 2. %F A199592 a(0) = 12, a(1) = 122; a(n) = a(n-1)^2 - 2*(a(n-2)-1)^2, n >= 2. %F A199592 a(0) = 12; a(n) = 10*(Product_{i=0..n-1} a(i)) + 2, n >= 1. %F A199592 a(n) = A152583(n) - 1. %F A199592 Sum_{n>=0} 2^n/a(n) = 1/10. - _Amiram Eldar_, Oct 03 2022 %e A199592 a(0) = 11^(2^0) + 1 = 11^1 + 1 = 12 = 10*(2^0) + 2; %e A199592 a(1) = 11^(2^1) + 1 = 11^2 + 1 = 122 = 10*(2^1*6) + 2; %e A199592 a(2) = 11^(2^2) + 1 = 11^4 + 1 = 14642 = 10*(2^2*6*61) + 2; %e A199592 a(3) = 11^(2^3) + 1 = 11^8 + 1 = 214358882 = 10*(2^3*6*61*7321) + 2; %e A199592 a(4) = 11^(2^4) + 1 = 11^16 + 1 = 45949729863572162 = 10*(2^4*6*61*7321*107179441) + 2; %e A199592 a(5) = 11^(2^5) + 1 = 11^32 + 1 = 2111377674535255285545615254209922 = 10*(2^5*6*61*7321*107179441*22974864931786081) + 2; %t A199592 Table[11^2^n + 1, {n, 0, 6}] %o A199592 (Magma) [11^2^n+1 : n in [0..6]] %o A199592 (PARI) for(n=0, 6, print1(11^2^n+1, ", ")) %Y A199592 Cf. A059919, A199591, A078303, A078304, A152581, A080176, A152585. %K A199592 easy,nonn %O A199592 0,1 %A A199592 _Arkadiusz Wesolowski_, Nov 08 2011 # Content is available under The OEIS End-User License Agreement: http://oeis.org/LICENSE