# Greetings from The On-Line Encyclopedia of Integer Sequences! http://oeis.org/ Search: id:a180863 Showing 1-1 of 1 %I A180863 #33 Feb 11 2023 16:21:11 %S A180863 6,21,44,75,114,161,216,279,350,429,516,611,714,825,944,1071,1206, %T A180863 1349,1500,1659,1826,2001,2184,2375,2574,2781,2996,3219,3450,3689, %U A180863 3936,4191,4454,4725,5004,5291,5586,5889,6200,6519,6846,7181,7524,7875,8234,8601 %N A180863 Wiener index of the n-sun graph. %C A180863 The Wiener index of a connected graph is the sum of distances between all unordered pairs of vertices in the graph. %C A180863 The Wiener polynomial of the n-sun graph is (1/2)*nt[(n-3)t^2+2(n-1)t+n+3]. %C A180863 Comment from _Zachary Dove_, Apr 19 2021 (Start) %C A180863 (Cf. A343560) %C A180863 On a square lattice, place the nonnegative integers at lattice points forming a spiral as follows: place "0" at the origin; then move one step downward (i.e., in the negative y direction) and place "1" at the lattice point reached; then turn 90 degrees in either direction and place a "2" at the next lattice point; then make another 90-degree turn in the same direction and place a "3" at the lattice point; etc. The terms of the sequence will lie parallel to the positive x-axis, located within the first quadrant, as seen in the example below: %C A180863 . %C A180863 99 64--65--66--67--68--69--70--71--72 %C A180863 | | | %C A180863 98 63 36--37--38--39--40--41--42 73 %C A180863 | | | | | %C A180863 97 62 35 16--17--18--19--20 43 74 %C A180863 | | | | | | | %C A180863 96 61 34 15 4---5--*6**21**44**75* %C A180863 | | | | | | | | | %C A180863 95 60 33 14 3 0 7 22 45 76 %C A180863 | | | | | | | | | | %C A180863 94 59 32 13 2---1 8 23 46 77 %C A180863 | | | | | | | | %C A180863 93 58 31 12--11--10---9 24 47 78 %C A180863 | | | | | | %C A180863 92 57 30--29--28--27--26--25 48 79 %C A180863 | | | | %C A180863 91 56--55--54--53--52--51--50--49 80 %C A180863 | | %C A180863 90--89--88--87--86--85--84--83--82--81 %C A180863 (End) %H A180863 B. E. Sagan, Y-N. Yeh and P. Zhang, The Wiener Polynomial of a Graph, Internat. J. of Quantum Chem., 60 (1996), 959-969. %H A180863 Eric Weisstein's World of Mathematics, Sun Graph. %H A180863 Eric Weisstein's World of Mathematics, Wiener Index. %H A180863 Index entries for linear recurrences with constant coefficients, signature (3,-3,1). %F A180863 a(n) = n*(4*n-5). %F A180863 G.f.: x^2*(-6-3*x+x^2)/(x-1)^3. - _Colin Barker_, Oct 31 2012, adapted to new offset Sep 29 2021 %F A180863 a(n) = 3*a(n-1) - 3*a(n-2) + a(n). - _Eric W. Weisstein_, Sep 07 2017 %F A180863 a(n) = A033954(n-1)-1 = A033951(n-1) -1. -_R. J. Mathar_, Sep 29 2021 %F A180863 Sum_{n>=2} 1/a(n) = 1/5 - Pi/10 + 3*log(2)/5. - _Amiram Eldar_, Apr 16 2022 %F A180863 E.g.f.: exp(x)*(-x + 4*x^2) + x. - _Nikolaos Pantelidis_, Feb 10 2023 %p A180863 seq(n*(4*n-5), n = 2 .. 50); %t A180863 (* Start from _Eric W. Weisstein_, Sep 07 2017, adapted to new offset *) %t A180863 Table[n (4 n - 5), {n, 2, 20}] %t A180863 LinearRecurrence[{3, -3, 1}, {6, 21, 44}, 20] %t A180863 CoefficientList[Series[(-6 - 3 x + x^2)/(-1 + x)^3, {x, 0, 20}], x] %t A180863 (* End *) %o A180863 (PARI) a(n)=n*(4*n-5) \\ _Charles R Greathouse IV_, Jun 17 2017 %K A180863 nonn,easy %O A180863 2,1 %A A180863 _Emeric Deutsch_, Sep 28 2010 %E A180863 a(2)=6 prefixed by _R. J. Mathar_, Sep 29 2021 # Content is available under The OEIS End-User License Agreement: http://oeis.org/LICENSE