# Greetings from The On-Line Encyclopedia of Integer Sequences! http://oeis.org/ Search: id:a180860 Showing 1-1 of 1 %I A180860 #2 Mar 30 2012 17:36:24 %S A180860 8,16,17,26,29,31,42,43,48,51,61,64,67,74,78,88,88,94,99,108,113,119, %T A180860 121,124,133,140,151,157,160,158,164,170,182,191,204,211,206,206,208, %U A180860 218,227,242,253,268,276,264,259,264,270,284,296,314,327,344,353,328 %N A180860 Square array read by antidiagonals: T(m,n) is the Wiener index of the tadpole graph L(m,n) (m>=3, n>=1). L(m,n) is the graph obtained by joining with an edge a node in the cycle graph C_m to an end-node of the path graph P_n. The Wiener index of a connected graph is the sum of distances between all unordered pairs of vertices in the graph. %C A180860 Tadpole graphs are also called keys (see the Gross & Yellen reference, p. 895). %C A180860 T(m,1)=A180861(m). %D A180860 J. L. Gross and J. Yellen, eds., Handbook of Graph Theory, CRC Press, 2004. %H A180860 Eric Weisstein's World of Mathematics, Tadpole Graph. %F A180860 T(2m,n)=m^3+(1/6)n(n^2-1)+mn(m+n+1). %F A180860 T(2m+1,n)=(1/2)m(m+1)(2m+1)+(1/6)n(n+1)(n+2)+mn(m+n+2). %e A180860 T(3,1)=8 because the graph consists of a triangle ABCA and an edge AD; the distances are d(A,B)=d(B,C)=d(C,A)=d(A,D)=1 and d(DB)=d(DC)=2. %e A180860 Square array T(i,j) begins: %e A180860 8,17,31,51,78,... %e A180860 16,29,48,74,108,... %e A180860 26,43,67,99,140,... %e A180860 42,64,94,133,182,... %p A180860 T := proc (m, n) if `mod`(m, 2) = 0 then (1/8)*m^3+(1/6)*n*(n^2-1)+(1/4)*m*n*(m+2*n+2) else (1/8)*m*(m^2-1)+(1/6)*n*(n+1)*(n+2)+(1/4)*n*(m-1)*(m+2*n+3) end if end proc: for n from 3 to 13 do seq(T(n+1-i, i), i = 1 .. n-2) end do; # yields sequence in triangular form %Y A180860 Cf. A180861 %K A180860 nonn,tabl %O A180860 3,1 %A A180860 _Emeric Deutsch_, Sep 27 2010 # Content is available under The OEIS End-User License Agreement: http://oeis.org/LICENSE