# Greetings from The On-Line Encyclopedia of Integer Sequences! http://oeis.org/ Search: id:a186025 Showing 1-1 of 1 %I A186025 #25 Sep 08 2022 08:45:55 %S A186025 1,0,-1,-4,-12,-33,-88,-232,-609,-1596,-4180,-10945,-28656,-75024, %T A186025 -196417,-514228,-1346268,-3524577,-9227464,-24157816,-63245985, %U A186025 -165580140,-433494436,-1134903169,-2971215072,-7778742048,-20365011073,-53316291172,-139583862444 %N A186025 a(n) = 0^n + 1 - F(n-1)^2 - F(n)^2, where F = A000045. %C A186025 Row sums of number triangle A186024. %H A186025 G. C. Greubel, Table of n, a(n) for n = 0..1000 %H A186025 Index entries for linear recurrences with constant coefficients, signature (4,-4,1). %F A186025 G.f.: (1-4x+3x^2-x^3)/(1-4x+4x^2-x^3) = (1-4x+3x^2-x^3)/((1-x)(1-3x+x^2)). %F A186025 a(n) = -A027941(n-1), n>0. - _R. J. Mathar_, Mar 21 2013 %t A186025 Join[{1}, Table[0^n + 1 - Fibonacci[n - 1]^2 - Fibonacci[n]^2, {n, 30}]] (* _Vincenzo Librandi_, Apr 24 2015 *) %t A186025 LinearRecurrence[{4,-4,1},{1,0,-1,-4},30] (* _Harvey P. Dale_, Dec 16 2015 *) %o A186025 (Magma) [0^n+1-Fibonacci(n-1)^2-Fibonacci(n)^2: n in [0..30]]; // _Vincenzo Librandi_, Apr 24 2015 %o A186025 (PARI) x='x+O('x^50); Vec((1-4*x+3*x^2-x^3)/(1-4*x+4*x^2-x^3)) \\ _G. C. Greubel_, Jul 24 2017 %Y A186025 Cf. A000045, A027941. %K A186025 sign,easy %O A186025 0,4 %A A186025 _Paul Barry_, Feb 10 2011 %E A186025 More terms from _Vincenzo Librandi_, Apr 24 2015 # Content is available under The OEIS End-User License Agreement: http://oeis.org/LICENSE