# Greetings from The On-Line Encyclopedia of Integer Sequences! http://oeis.org/ Search: id:a171399 Showing 1-1 of 1 %I A171399 #45 Feb 07 2024 01:17:13 %S A171399 2,83,241,6599,126551,1544479,4864121,60686737,1966194317,63481708607, %T A171399 1161468891953,14674403807731,22128836547913,399379081448429, %U A171399 5410229663058299,248264241666057167 %N A171399 Prime(k), where k is such that (Sum_{i=1..k} prime(i)) / k is an integer. %C A171399 Corresponding values of k, Sum_{i=1..k} p_i, and (Sum_{i=1..k} p_i) / k are given in A045345, A050247 and A050248. No other solutions for p_k < 4011201392413. %C A171399 a(13) > 2*10^13. - _Donovan Johnson_, Aug 23 2010 %C A171399 a(16) > 5456843462009647. - _Bruce Garner_, Mar 06 2021 %C A171399 a(17) > 253814097223614463. - _Paul W. Dyson_, Sep 26 2022 %H A171399 Kaisa Matomäki, A note on the sum of the first n primes, Quart. J. Math. 61 (2010), pp. 109-115. %H A171399 OEIS Wiki, Sums of powers of primes divisibility sequences %F A171399 a(n) = A000040(A045345(n)). %e A171399 83 is the 23rd prime and (Sum_{i=1..23} p_i) / 23 = 874 / 23 = 38 (integer), so 83 is a term. %t A171399 t = {}; sm = 0; Do[sm = sm + Prime[n]; If[Mod[sm, n] == 0, AppendTo[t, Prime[n]]], {n, 100000}]; t (* _T. D. Noe_, Mar 19 2013 *) %o A171399 (PARI) s=0; n=0; forprime(p=2, 1e7, s+=p; if(s%n++==0, print1(p", "))) \\ _Charles R Greathouse IV_, Jun 13 2012 %Y A171399 Cf. A085450 (smallest m > 1 such that m divides Sum_{k=1..m} prime(k)^n). %Y A171399 Cf. A007504, A045345, A171399, A128165, A233523, A050247, A050248. %Y A171399 Cf. A024450, A111441, A217599, A128166, A233862, A217600, A217601. %K A171399 nonn,more %O A171399 1,1 %A A171399 _Jaroslav Krizek_, Dec 07 2009 %E A171399 a(6) corrected and a(12) from _Donovan Johnson_, Aug 23 2010 %E A171399 a(13) from _Robert Price_, Mar 17 2013 %E A171399 a(14)-a(15) from _Bruce Garner_, Mar 06 2021 %E A171399 a(16) from _Paul W. Dyson_, Sep 26 2022 # Content is available under The OEIS End-User License Agreement: http://oeis.org/LICENSE