# Greetings from The On-Line Encyclopedia of Integer Sequences! http://oeis.org/ Search: id:a176872 Showing 1-1 of 1 %I A176872 #6 Jul 03 2022 18:10:45 %S A176872 3,11,19,67,71,83,107,227,263,269,613,619,1031,1061,1163,1193,1223, %T A176872 1307,1787,1801,1811,1831,1979,1997,2129,4099,4127,4133,4139,4157, %U A176872 4373,4409,4463,4637,4643,4703,5843,5849,5879,5903,6089,6101,6113,6143,6163,6211 %N A176872 Prime numbers p such that p-LargestSquare is prime and p-LargestCube is also prime, (LargestSquare <= p, LargestCube <= p). %C A176872 11-3^2=2;11-2^3=3, 19-4^2=3,19-2^3=11,.. %H A176872 Harvey P. Dale, Table of n, a(n) for n = 1..1000 %t A176872 lst={};Do[p2=n-Floor[Sqrt[n]]^2;p3=n-Floor[n^(1/3)]^3;If[PrimeQ[p2]&&PrimeQ[p3]&&PrimeQ[n],AppendTo[lst,n]],{n,8!}];lst %t A176872 plsplcQ[p_]:=AllTrue[{p-Floor[Sqrt[p]]^2,p-Floor[Surd[p,3]]^3},PrimeQ]; Select[ Prime[ Range[1000]],plsplcQ] (* _Harvey P. Dale_, Jul 03 2022 *) %Y A176872 Cf. A135932, A176864, A176865, A176870, A176871 %K A176872 nonn %O A176872 1,1 %A A176872 _Vladimir Joseph Stephan Orlovsky_, Apr 27 2010 # Content is available under The OEIS End-User License Agreement: http://oeis.org/LICENSE