# Greetings from The On-Line Encyclopedia of Integer Sequences! http://oeis.org/ Search: id:a175493 Showing 1-1 of 1 %I A175493 #21 May 03 2022 21:16:20 %S A175493 1,4,36,2304,57600,74649600,3657830400,14982473318400, %T A175493 10922223049113600,109222230491136000000,13215889889427456000000, %U A175493 39462435755592152776704000000,6669151642695073819262976000000,256202129505773955840806486016000000 %N A175493 a(n) = Product_{k=1..n} k^d(k), where d(k) = number of divisors of k. %C A175493 a(n) = a(n-1)*A062758(n). %C A175493 a(n) = Product_{k=1..n} k^floor(n/k) * (floor(n/k))!. %H A175493 Michael S. Branicky, Table of n, a(n) for n = 1..117 %t A175493 f[n_] := Product[ k^DivisorSigma[0, k], {k, n}]; Array[f, 15] (* _Robert G. Wilson v_, Jun 11 2010 *) %o A175493 (Python) %o A175493 from sympy import divisor_count %o A175493 from itertools import count, islice %o A175493 def agen(): %o A175493 an = 1 %o A175493 for k in count(2): %o A175493 yield an %o A175493 an *= k**divisor_count(k) %o A175493 print(list(islice(agen(), 14))) # _Michael S. Branicky_, May 03 2022 %o A175493 (PARI) a(n) = prod(k=1, n, k^numdiv(k)); \\ _Michel Marcus_, May 03 2022 %Y A175493 Cf. A062758. %Y A175493 Cf. A174939 (sum instead of product). %K A175493 nonn %O A175493 1,2 %A A175493 _Leroy Quet_, May 30 2010 %E A175493 a(6) onwards from _Robert G. Wilson v_ and _Jon E. Schoenfield_, Jun 11 2010 %E A175493 a(14) and beyond from _Michael S. Branicky_, May 03 2022 # Content is available under The OEIS End-User License Agreement: http://oeis.org/LICENSE