# Greetings from The On-Line Encyclopedia of Integer Sequences! http://oeis.org/ Search: id:a174239 Showing 1-1 of 1 %I A174239 #19 Sep 08 2022 08:45:51 %S A174239 1,0,3,1,5,2,7,3,9,4,11,5,13,6,15,7,17,8,19,9,21,10,23,11,25,12,27,13, %T A174239 29,14,31,15,33,16,35,17,37,18,39,19,41,20,43,21,45,22,47,23,49,24,51, %U A174239 25,53,26,55,27,57,28,59,29,61,30,63,31,65,32,67,33,69,34,71,35,73,36,75,37,77,38,79,39,81 %N A174239 a(n) = (3*n + 1 + (-1)^n*(n+3))/4. %C A174239 Obtained from A026741 by swapping pairs of consecutive entries. %C A174239 The main diagonal of an array with this sequence in the top row and further rows defined by the first differences of their previous row is essentially 1 followed by 3*A045623(.): %C A174239 1, 0, 3, 1, 5, 2, 7, 3, 9, 4, 11, 5, 13, 6, 15, 7, 17, 8, ... %C A174239 -1, 3, -2, 4, -3, 5, -4, 6, -5, 7, -6, 8, -7, 9, -8, 10, -9, ... %C A174239 4, -5, 6, -7, 8, -9, 10, -11, 12, -13, 14, -15, 16, -17, ... %C A174239 -9, 11, -13, 15, -17, 19, -21, 23, -25, 27, -29, 31, ... %C A174239 20, -24, 28, -32, 36, -40, 44, -48, 52, -56, 60, -64, ... %C A174239 -44, 52, -60, 68, -76, 84, -92, 100, -108, 116, -124, 132, ... %C A174239 96, -112, 128, -144, 160, -176, 192, -208, 224, -240, ... %C A174239 Also, numerator of (Nimsum n+1)/2 = A004442(n)/2. - _Wesley Ivan Hurt_, Mar 21 2015 %H A174239 Index entries for linear recurrences with constant coefficients, signature (0,2,0,-1). %F A174239 a(2n) = 2n+1; a(2n+1) = n. %F A174239 a(n) = 2*a(n-2) - a(n-4). %F A174239 a(2n+1) - 2*a(2n) = -A016789(n+1). %F A174239 a(2n+2) - 2*a(2n+1) = 3. %F A174239 G.f.: ( 1+x^2+x^3 ) / ( (x-1)^2*(1+x)^2 ). - _R. J. Mathar_, Feb 07 2011 %p A174239 A174239:=n->(3*n+1+(-1)^n*(n+3))/4: seq(A174239(n), n=0..100); # _Wesley Ivan Hurt_, Mar 21 2015 %t A174239 Table[(3 n + 1 + (-1)^n*(n + 3))/4, {n, 0, 100}] (* _Wesley Ivan Hurt_, Mar 21 2015 *) %t A174239 LinearRecurrence[{0,2,0,-1},{1,0,3,1},90] (* _Harvey P. Dale_, Jul 16 2018 *) %o A174239 (Magma) [(3*n+1 +(-1)^n*(n+3))/4: n in [0..80]]; // _Vincenzo Librandi_, Feb 08 2011 %Y A174239 Cf. A004442. %K A174239 nonn,easy %O A174239 0,3 %A A174239 _Paul Curtz_, Mar 13 2010 # Content is available under The OEIS End-User License Agreement: http://oeis.org/LICENSE