# Greetings from The On-Line Encyclopedia of Integer Sequences! http://oeis.org/ Search: id:a163607 Showing 1-1 of 1 %I A163607 #20 Mar 06 2023 12:42:29 %S A163607 5,9,23,55,133,321,775,1871,4517,10905,26327,63559,153445,370449, %T A163607 894343,2159135,5212613,12584361,30381335,73347031,177075397, %U A163607 427497825,1032071047,2491639919,6015350885,14522341689,35060034263,84642410215 %N A163607 a(n) = ((5 + 2*sqrt(2))*(1 + sqrt(2))^n + (5 - 2*sqrt(2))*(1 - sqrt(2))^n)/2. %C A163607 Binomial transform of A163888. Inverse binomial transform of A163608. %H A163607 G. C. Greubel, Table of n, a(n) for n = 0..1000 %H A163607 Index entries for linear recurrences with constant coefficients, signature (2,1). %F A163607 a(n) = 2*a(n-1) + a(n-2) for n > 1; a(0) = 5, a(1) = 9. %F A163607 G.f.: (5-x)/(1-2*x-x^2). %F A163607 a(n) = 5*A000129(n+1) - A000129(n). - _R. J. Mathar_, Nov 08 2013 %F A163607 E.g.f.: exp(x)*( 5*cosh(sqrt(2)*x) + 2*sqrt(2)*sinh(sqrt(2)*x) ). - _G. C. Greubel_, Jul 29 2017 %F A163607 a(n) = 2*A001333(n) + A001333(n+2). - _Philippe Deléham_, Mar 06 2023 %t A163607 LinearRecurrence[{2, 1}, {5, 9}, 50] (* _G. C. Greubel_, Jul 29 2017 *) %o A163607 (Magma) Z:= PolynomialRing(Integers()); N:=NumberField(x^2-2); S:=[ ((5+2*r)*(1+r)^n+(5-2*r)*(1-r)^n)/2: n in [0..27] ]; [ Integers()!S[j]: j in [1..#S] ]; // _Klaus Brockhaus_, Aug 06 2009 %o A163607 (PARI) x='x+O('x^50); Vec((5-x)/(1-2*x-x^2)) \\ _G. C. Greubel_, Jul 29 2017 %Y A163607 Cf. A163608, A163888. %Y A163607 Cf. A000129, A001333. %K A163607 nonn,easy %O A163607 0,1 %A A163607 Al Hakanson (hawkuu(AT)gmail.com), Aug 01 2009 %E A163607 Edited and extended beyond a(5) by _Klaus Brockhaus_, Aug 06 2009 # Content is available under The OEIS End-User License Agreement: http://oeis.org/LICENSE