# Greetings from The On-Line Encyclopedia of Integer Sequences! http://oeis.org/
Search: id:a167495
Showing 1-1 of 1
%I A167495 #15 Dec 09 2018 14:41:56
%S A167495 2,3,5,13,31,61,139,283,571,1153,2311,4651,9343,19141,38569,77419,
%T A167495 154873,310231,621631,1243483,2486971,4974721
%N A167495 Records in A167494.
%C A167495 Conjecture: each term > 3 of the sequence is the greater member of a twin prime pair (A006512).
%C A167495 Indices of the records are 1, 2, 4, 6, 9, 10, 15, 18, 21, 25, 28, 30, 38, 72, 90, ... [_R. J. Mathar_, Nov 05 2009]
%C A167495 One can formulate a similar conjecture without verification of the primality of the terms (see Conjecture 4 in my paper). [_Vladimir Shevelev_, Nov 13 2009]
%H A167495 E. S. Rowland, A natural prime-generating recurrence, Journal of Integer Sequences, Vol.11 (2008), Article 08.2.8.
%H A167495 E. S. Rowland, A natural prime-generating recurrence, arXiv:0710.3217 [math.NT], 2007-2008.
%H A167495 V. Shevelev, A new generator of primes based on the Rowland idea, arXiv:0910.4676 [math.NT], 2009.
%H A167495 V. Shevelev, Three theorems on twin primes, arXiv:0911.5478 [math.NT], 2009-2010. [_Vladimir Shevelev_, Dec 03 2009]
%t A167495 nxt[{n_, a_}] := {n + 1, If[EvenQ[n], a + GCD[n+1, a], a + GCD[n-1, a]]};
%t A167495 A167494 = DeleteCases[Differences[Transpose[NestList[nxt, {1, 2}, 10^7]][[2]]], 1];
%t A167495 Tally[A167494][[All, 1]] //. {a1___, a2_, a3___, a4_, a5___} /; a4 <= a2 :> {a1, a2, a3, a5} (* _Jean-François Alcover_, Oct 29 2018, using _Harvey P. Dale_'s code for A167494 *)
%Y A167495 Cf. A167494, A167493, A167197, A167195, A167170, A167168, A106108, A132199, A167054, A167053, A166944, A166945, A116533, A163961, A163963, A084662, A084663, A134162, A135506, A135508, A118679, A120293.
%K A167495 nonn,more
%O A167495 1,1
%A A167495 _Vladimir Shevelev_, Nov 05 2009
%E A167495 Simplified the definition to include all records; one term added by _R. J. Mathar_, Nov 05 2009
%E A167495 a(16) to a(21) from _R. J. Mathar_, Nov 19 2009
%E A167495 a(22) from _Jean-François Alcover_, Oct 29 2018
# Content is available under The OEIS End-User License Agreement: http://oeis.org/LICENSE