# Greetings from The On-Line Encyclopedia of Integer Sequences! http://oeis.org/ Search: id:a158449 Showing 1-1 of 1 %I A158449 #17 Sep 13 2023 09:39:49 %S A158449 1,0,1,0,2,0,3,1,7,3,17,7,43,24,118,74,330,206,888,612,2571,1810,7274, %T A158449 5552,21099,16334,61252,49025,179239,146048,523455,440980,1554184, %U A158449 1315927,4572794,3972193,13569220,11873290,40263681,35824869,119901609,107397585 %N A158449 The number of sigma-admissible subsets of {1,2,...,n} as defined by Marzuola-Miller. %C A158449 a(n), or Asigma(n), equals the number of sigma-admissible subsets of {1,2,...,n}. %C A158449 Alternate description: (1) Asigma(k) is the same as the number of additive 2-bases for k which are not additive 2-bases for k+1. (2) Asigma(n) is the number of vertices at height n in the rooted tree in figure 5 of [Marzuola-Miller] which spawn only one vertex at height n+1. [Jeremy L. Marzuola (marzuola(AT)math.uni-bonn.de), Aug 08 2009] %C A158449 The number of symmetric numerical sets S with atom monoid A(S) equal to {0,n+1,2n+2,2n+3,2n+4,2n+5,...} %H A158449 Martin Fuller, Table of n, a(n) for n = 1..65 %H A158449 S. R. Finch, Monoids of natural numbers [Broken link] %H A158449 S. R. Finch, Monoids of natural numbers, March 17, 2009. [Cached copy, with permission of the author] %H A158449 Martin Fuller, C program %H A158449 J. Marzuola and A. Miller, Counting Numerical Sets with No Small Atoms, arXiv:0805.3493 [math.CO], 2008. %H A158449 J. Marzuola and A. Miller, Counting numerical sets with no small atoms, J. Combin. Theory A 117 (6) (2010) 650-667. %F A158449 Recursively related to A164047 by the formula Asigma(2k+1)' = 2Asigma(2k)'-Asigma(k) %e A158449 a(1)=a(3)=1 since {0,2,4,5,6,7,...} and {0,1,4,5,8,9,10,11,...} are the only sets satisfying the required conditions. %o A158449 (C) See Martin Fuller link %Y A158449 Cf. A066062, A164047. %K A158449 nonn %O A158449 1,5 %A A158449 _Steven Finch_, Mar 19 2009 %E A158449 Definition rephrased by Jeremy L. Marzuola (marzuola(AT)math.uni-bonn.de), Aug 08 2009 %E A158449 Edited by _R. J. Mathar_, Aug 31 2009 %E A158449 a(33) onwards from _Martin Fuller_, Sep 13 2023 # Content is available under The OEIS End-User License Agreement: http://oeis.org/LICENSE