# Greetings from The On-Line Encyclopedia of Integer Sequences! http://oeis.org/ Search: id:a157785 Showing 1-1 of 1 %I A157785 #15 Nov 30 2021 05:36:03 %S A157785 1,1,-1,-2,1,1,-8,6,3,-1,64,-40,-30,5,1,1024,-704,-440,110,11,-1, %T A157785 -32768,21504,14784,-3080,-462,21,1,-2097152,1409024,924672,-211904, %U A157785 -26488,1806,43,-1,268435456,-178257920,-119767040,26199040,3602368,-204680,-7310,85,1 %N A157785 Triangle of coefficients of the polynomials defined by q^binomial(n, 2)*QPochhammer(x, 1/q, n), where q = -2. %C A157785 Triangle T(n,k), 0 <= k <= n, read by rows given by [1, q-1, q^2, q^3-q, q^4, q^5-q^2, q^6, q^7-q^3, q^8, ...] DELTA [-1, 0, -q, 0, -q^2, 0, -q^3, 0, -q^4, 0, ...] (for q=-2) = [1, -3, 4, -6, 16, -36, 64,...] DELTA [ -1, 0, 2, 0, -4, 0, 8, 0, -16, 0, ...] where DELTA is the operator defined in A084938. - _Philippe Deléham_, Mar 10 2009 %H A157785 G. C. Greubel, Rows n = 0..50 of the triangle, flattened %F A157785 Sum_{k=0..n} T(n, k) = 0^n. %F A157785 From _G. C. Greubel_, Nov 29 2021: (Start) %F A157785 T(n, k) = [x^k] coefficients of the polynomials defined by q^binomial(n, 2)*QPochhammer(x, 1/q, n), where q = -2. %F A157785 T(n, k) = [x^k] Product_{j=0..n-1} (q^j - x). (End) %e A157785 Triangle begins as: %e A157785 1; %e A157785 1, -1; %e A157785 -2, 1, 1; %e A157785 -8, 6, 3, -1; %e A157785 64, -40, -30, 5, 1; %e A157785 1024, -704, -440, 110, 11, -1; %e A157785 -32768, 21504, 14784, -3080, -462, 21, 1; %e A157785 -2097152, 1409024, 924672, -211904, -26488, 1806, 43, -1; %e A157785 268435456, -178257920, -119767040, 26199040, 3602368, -204680, -7310, 85, 1; %t A157785 p[x_, n_, q_]:= q^Binomial[n, 2]*QPochhammer[x, 1/q, n]; %t A157785 Table[CoefficientList[Series[p[x, n, -2], {x,0,n}], x], {n,0,10}]//Flatten (* _G. C. Greubel_, Nov 29 2021 *) %Y A157785 Cf. this sequence (q=-2), A158020 (q=-1), A007318 (q=1), A157963 (q=2). %Y A157785 Cf. A135950 (q=2; alternative). %Y A157785 Cf. A022166, A135950. %K A157785 sign,tabl %O A157785 0,4 %A A157785 _Roger L. Bagula_, Mar 06 2009 %E A157785 Edited by _G. C. Greubel_, Nov 29 2021 # Content is available under The OEIS End-User License Agreement: http://oeis.org/LICENSE