# Greetings from The On-Line Encyclopedia of Integer Sequences! http://oeis.org/ Search: id:a156697 Showing 1-1 of 1 %I A156697 #11 Mar 01 2021 02:01:44 %S A156697 1,1,1,1,-2,1,1,16,16,1,1,-224,1792,-224,1,1,4480,501760,501760,4480, %T A156697 1,1,-116480,260915200,-3652812800,260915200,-116480,1,1,3727360, %U A156697 217081446400,60782804992000,60782804992000,217081446400,3727360,1 %N A156697 Triangle T(n, k, m) = t(n,m)/( t(k,m) * t(n-k,m) ) with T(n, 0, m) = T(n, n, m) = 1, where t(n, m) = Product_{j=1..n} Product_{i=1..j-1} ( 1 - (m+1)*(2*i-1) ) and m = 2, read by rows. %C A156697 Row sums are: {1, 2, 0, 34, 1346, 1012482, -3131215358, 121999780331522, %C A156697 34591292869081661442, 107137531255480378706493442, ...}. %H A156697 G. C. Greubel, Rows n = 0..30 of the triangle, flattened %F A156697 T(n, k, m) = t(n,m)/( t(k,m) * t(n-k,m) ) with T(n, 0, m) = T(n, n, m) = 1, where t(n, m) = Product_{j=1..n} Product_{i=1..j-1} ( 1 - (m+1)*(2*i-1) ) and m = 2. %F A156697 T(n, k, m, p, q) = (-p*(m+1))^(k*(n-k)) * (f(n,m,p,q)/(f(k,m,p,q)*f(n-k,m,p,q))) where Product_{j=1..n} Pochhammer( (q*(m+1) -1)/(p*(m+1)), j) for (m, p, q) = (2, 2, -1). - _G. C. Greubel_, Feb 25 2021 %e A156697 Triangle begins as: %e A156697 1; %e A156697 1, 1; %e A156697 1, -2, 1; %e A156697 1, 16, 16, 1; %e A156697 1, -224, 1792, -224, 1; %e A156697 1, 4480, 501760, 501760, 4480, 1; %e A156697 1, -116480, 260915200, -3652812800, 260915200, -116480, 1; %t A156697 (* First program *) %t A156697 t[n_, k_]:= If[k==0, n!, Product[1 -(2*i-1)*(k+1), {j,n}, {i,0,j-1}] ]; %t A156697 T[n_, k_, m_]:= If[n==0, 1, t[n, m]/(t[k, m]*t[n-k, m])]; %t A156697 Table[T[n,k,2], {n,0,12}, {k,0,n}]//Flatten (* modified by _G. C. Greubel_, Feb 25 2021 *) %t A156697 (* Second program *) %t A156697 f[n_, m_, p_, q_]:= Product[Pochhammer[(q*(m+1) -1)/(p*(m+1)), j], {j,n}]; %t A156697 T[n_, k_, m_, p_, q_]:= (-p*(m+1))^(k*(n-k))*(f[n,m,p,q]/(f[k,m,p,q]*f[n-k,m,p,q])); %t A156697 Table[T[n,k,2,2,-1], {n,0,12}, {k,0,n}]//Flatten (* _G. C. Greubel_, Feb 25 2021 *) %o A156697 (Sage) %o A156697 @CachedFunction %o A156697 def f(n, m, p, q): return product( rising_factorial( (q*(m+1)-1)/(p*(m+1)), j) for j in (1..n)) %o A156697 def T(n, k, m, p, q): return (-p*(m+1))^(k*(n-k))*(f(n,m,p,q)/(f(k,m,p,q)*f(n-k,m,p,q))) %o A156697 flatten([[T(n,k,2,2,-1) for k in (0..n)] for n in (0..12)]) # _G. C. Greubel_, Feb 25 2021 %o A156697 (Magma) %o A156697 f:= func< n,m,p,q | n eq 0 select 1 else m eq 0 select Factorial(n) else (&*[ 1 -(p*i+q)*(m+1): i in [0..j], j in [0..n-1]]) >; %o A156697 T:= func< n,k,m,p,q | f(n,m,p,q)/(f(k,m,p,q)*f(n-k,m,p,q)) >; %o A156697 [T(n,k,2,2,-1): k in [0..n], n in [0..12]]; // _G. C. Greubel_, Feb 25 2021 %Y A156697 Cf. A007318 (m=0), A156696 (m=1), this sequence (m=2), A156698 (m=3). %Y A156697 Cf. A156690, A156691, A156692, A156693. %Y A156697 Cf. A156691, A156699, A156725. %K A156697 sign,tabl %O A156697 0,5 %A A156697 _Roger L. Bagula_, Feb 13 2009 %E A156697 Edited by _G. C. Greubel_, Feb 25 2021 # Content is available under The OEIS End-User License Agreement: http://oeis.org/LICENSE