# Greetings from The On-Line Encyclopedia of Integer Sequences! http://oeis.org/ Search: id:a149951 Showing 1-1 of 1 %I A149951 #2 Mar 30 2012 18:54:16 %S A149951 1,2,5,15,50,176,646,2452,9549,37961,153511,629732,2614885,10972374, %T A149951 46463260,198334111,852639288,3688754625,16049389276,70187680379, %U A149951 308375520541,1360617913209,6026613738270,26788857783196,119469665596501,534412213485831,2397257900073820,10781700156879226 %N A149951 Number of walks within N^3 (the first octant of Z^3) starting at (0,0,0) and consisting of n steps taken from {(-1, -1, 0), (-1, -1, 1), (0, 0, 1), (0, 1, 0), (1, 1, -1)} %H A149951 A. Bostan and M. Kauers, 2008. Automatic Classification of Restricted Lattice Walks, ArXiv 0811.2899. %t A149951 aux[i_Integer, j_Integer, k_Integer, n_Integer] := Which[Min[i, j, k, n] < 0 || Max[i, j, k] > n, 0, n == 0, KroneckerDelta[i, j, k, n], True, aux[i, j, k, n] = aux[-1 + i, -1 + j, 1 + k, -1 + n] + aux[i, -1 + j, k, -1 + n] + aux[i, j, -1 + k, -1 + n] + aux[1 + i, 1 + j, -1 + k, -1 + n] + aux[1 + i, 1 + j, k, -1 + n]]; Table[Sum[aux[i, j, k, n], {i, 0, n}, {j, 0, n}, {k, 0, n}], {n, 0, 10}] %K A149951 nonn,walk %O A149951 0,2 %A A149951 _Manuel Kauers_, Nov 18 2008 # Content is available under The OEIS End-User License Agreement: http://oeis.org/LICENSE