# Greetings from The On-Line Encyclopedia of Integer Sequences! http://oeis.org/ Search: id:a149489 Showing 1-1 of 1 %I A149489 #4 Jan 20 2024 14:52:21 %S A149489 1,1,4,14,52,209,860,3611,15470,67075,293936,1299135,5782369,25890073, %T A149489 116507143,526584341,2389109731,10875671609,49655540621,227316843705, %U A149489 1043115351009,4797021425961,22103655032502,102032014882075,471763934655236,2184603451900384,10130495327004170,47038661457594876 %N A149489 Number of walks within N^3 (the first octant of Z^3) starting at (0,0,0) and consisting of n steps taken from {(-1, 0, 1), (-1, 1, 1), (0, -1, 1), (0, 1, -1), (1, 1, 0)}. %H A149489 A. Bostan and M. Kauers, 2008. Automatic Classification of Restricted Lattice Walks, ArXiv 0811.2899. %t A149489 aux[i_Integer, j_Integer, k_Integer, n_Integer] := Which[Min[i, j, k, n] < 0 || Max[i, j, k] > n, 0, n == 0, KroneckerDelta[i, j, k, n], True, aux[i, j, k, n] = aux[-1 + i, -1 + j, k, -1 + n] + aux[i, -1 + j, 1 + k, -1 + n] + aux[i, 1 + j, -1 + k, -1 + n] + aux[1 + i, -1 + j, -1 + k, -1 + n] + aux[1 + i, j, -1 + k, -1 + n]]; Table[Sum[aux[i, j, k, n], {i, 0, n}, {j, 0, n}, {k, 0, n}], {n, 0, 10}] %K A149489 nonn,walk %O A149489 0,3 %A A149489 _Manuel Kauers_, Nov 18 2008 # Content is available under The OEIS End-User License Agreement: http://oeis.org/LICENSE