# Greetings from The On-Line Encyclopedia of Integer Sequences! http://oeis.org/ Search: id:a149228 Showing 1-1 of 1 %I A149228 #4 Dec 28 2023 21:10:34 %S A149228 1,1,4,10,46,146,696,2472,12001,45483,223022,881542,4348583,17699412, %T A149228 87646682,364484570,1809577040,7649804945,38047511026,162936769267, %U A149228 811426736660,3511428349970,17503203877425,76400925952003,381093314584880,1675546177429929,8362071716152935,36992673643317585 %N A149228 Number of walks within N^3 (the first octant of Z^3) starting at (0,0,0) and consisting of n steps taken from {(-1, -1, 1), (-1, 0, 1), (-1, 1, -1), (1, 0, 1), (1, 1, -1)}. %H A149228 A. Bostan and M. Kauers, 2008. Automatic Classification of Restricted Lattice Walks, ArXiv 0811.2899. %t A149228 aux[i_Integer, j_Integer, k_Integer, n_Integer] := Which[Min[i, j, k, n] < 0 || Max[i, j, k] > n, 0, n == 0, KroneckerDelta[i, j, k, n], True, aux[i, j, k, n] = aux[-1 + i, -1 + j, 1 + k, -1 + n] + aux[-1 + i, j, -1 + k, -1 + n] + aux[1 + i, -1 + j, 1 + k, -1 + n] + aux[1 + i, j, -1 + k, -1 + n] + aux[1 + i, 1 + j, -1 + k, -1 + n]]; Table[Sum[aux[i, j, k, n], {i, 0, n}, {j, 0, n}, {k, 0, n}], {n, 0, 10}] %K A149228 nonn,walk %O A149228 0,3 %A A149228 _Manuel Kauers_, Nov 18 2008 # Content is available under The OEIS End-User License Agreement: http://oeis.org/LICENSE