# Greetings from The On-Line Encyclopedia of Integer Sequences! http://oeis.org/ Search: id:a145088 Showing 1-1 of 1 %I A145088 #3 Mar 30 2012 18:37:15 %S A145088 1,1,5,49,741,15457,416661,13908049,557865765,26296627233, %T A145088 1431946482453,88859040485585,6214831383604709,485449303578082273, %U A145088 42025472165413172501,4005872618389765500113,418072369437989483917349 %N A145088 Row 3 of square table A145085. %C A145088 Let S(n,x) be the e.g.f. of row n of square table A145085, then the e.g.f.s satisfy: S(n,x) = exp( Integral S(n+1,x)^(n+1) dx ) for n>=0. %F A145088 E.g.f.: A(x) = S(3,x) = exp( Integral S(4,x)^4 dx ) where S(n,x) is the e.g.f. of row n of square table A145085. %F A145088 E.g.f.: A(x) = R(3,x)^(1/3) = exp( Integral R(4,x) dx ) where R(3,x) = e.g.f. of A145083 and R(4,x) = e.g.f. of A145084. %o A145088 (PARI) {a(n)=local(A=vector(n+4,j,1+j*x)); for(i=0,n+3,for(j=0,n,m=n+3-j;A[m]=exp(m*intformal(A[m+1]+x*O(x^n))))); n!*polcoeff(A[3]^(1/3),n,x)} %o A145088 (PARI) {a(n)=local(A=vector(n+4,j,1+j*x)); for(i=0,n+3,for(j=0,n,m=n+3-j;A[m]=exp(intformal(A[m+1]^(m+1)+x*O(x^n))))); n!*polcoeff(A[3],n,x)} %Y A145088 Cf. A145085, A145086, A145087, A145089; A145080, A145083. %K A145088 nonn %O A145088 0,3 %A A145088 _Paul D. Hanna_, Oct 01 2008 # Content is available under The OEIS End-User License Agreement: http://oeis.org/LICENSE