# Greetings from The On-Line Encyclopedia of Integer Sequences! http://oeis.org/ Search: id:a132230 Showing 1-1 of 1 %I A132230 #37 May 21 2021 15:55:22 %S A132230 31,61,151,181,211,241,271,331,421,541,571,601,631,661,691,751,811, %T A132230 991,1021,1051,1171,1201,1231,1291,1321,1381,1471,1531,1621,1741,1801, %U A132230 1831,1861,1951,2011,2131,2161,2221,2251,2281,2311,2341,2371,2521,2551,2671 %N A132230 Primes congruent to 1 (mod 30). %C A132230 Also primes congruent to 1 (mod 15). - _N. J. A. Sloane_, Jul 11 2008 %C A132230 Primes ending in 1 with (SOD-1)/3 integer where SOD is sum of digits. - _Ki Punches_, Feb 04 2009 %H A132230 Vincenzo Librandi, Table of n, a(n) for n = 1..10000 %H A132230 C. K. Caldwell, The Prime Pages. %H A132230 Omar E. Pol, Determinacion geometrica de los numeros primos y perfectos. %F A132230 a(n) = A111175(n)*30 + 1. - _Ray Chandler_, Apr 07 2009 %F A132230 Intersection of A030430 and A002476. - _Ray Chandler_, Apr 07 2009 %e A132230 From _Muniru A Asiru_, Nov 01 2017: (Start) %e A132230 31 is a prime and 31 = 30*1 + 1; %e A132230 61 is a prime and 61 = 30*2 + 1; %e A132230 151 is a prime and 151 = 30*5 + 1; %e A132230 211 is a prime and 211 = 30*7 + 1; %e A132230 241 is a prime and 241 = 30*8 + 1; %e A132230 271 is a prime and 271 = 30*9 + 1. %e A132230 (End) %p A132230 select(isprime, [seq(i,i=1..1000,30)]); # _Robert Israel_, Jan 19 2016 %t A132230 Select[Range[1, 3000, 30], PrimeQ] (* _Vladimir Joseph Stephan Orlovsky_, Feb 19 2012 *) %t A132230 Select[Prime[Range[400]],Mod[#,30]==1&] (* _Harvey P. Dale_, May 21 2021 *) %o A132230 (PARI) is(n)=isprime(n) && n%30==1 \\ _Charles R Greathouse IV_, Jul 01 2016 %o A132230 (GAP) A132230 := Filtered(Filtered([1..10^6], n -> n mod 30 = 1), IsPrime); # _Muniru A Asiru_, Nov 01 2017 %Y A132230 Cf. A057204, A068228, A129805, A039949, A132231-A132236. %K A132230 nonn,easy %O A132230 1,1 %A A132230 _Omar E. Pol_, Aug 15 2007 %E A132230 Edited by _Ray Chandler_, Apr 07 2009 # Content is available under The OEIS End-User License Agreement: http://oeis.org/LICENSE