# Greetings from The On-Line Encyclopedia of Integer Sequences! http://oeis.org/ Search: id:a134863 Showing 1-1 of 1 %I A134863 #33 Mar 27 2024 08:48:05 %S A134863 7,20,28,41,54,62,75,83,96,109,117,130,143,151,164,172,185,198,206, %T A134863 219,227,240,253,261,274,287,295,308,316,329,342,350,363,376,384,397, %U A134863 405,418,431,439,452,460,473,486,494,507,520,528,541,549,562,575,583,596 %N A134863 Wythoff BAB numbers. %C A134863 The lower and upper Wythoff sequences, A and B, satisfy the complementary equation BAB=2A+3B-1. %C A134863 Also numbers with suffix string 1010, when written in Zeckendorf representation. - _A.H.M. Smeets_, Mar 24 2024 %H A134863 A.H.M. Smeets, Table of n, a(n) for n = 1..20000 %H A134863 Clark Kimberling, Complementary equations and Wythoff Sequences, Journal of Integer Sequences 11 (2008) Article 08.3.3. %F A134863 a(n) = B(A(B(n))), n>=1, with A=A000201, the lower Wythoff sequence and B=A001950, the upper Wythoff sequence. %F A134863 From _A.H.M. Smeets_, Mar 24 2024: (Start) %F A134863 a(n) = 2*A(n) + 3*B(n) - 1 (see Clark Kimberling 2008), with A=A000201, B=A001950, the lower and upper Wythoff sequences, respectively. %F A134863 Equals {A035336}\{A134861} (= Wythoff BA \ Wythoff BAA). (End) %o A134863 (Python) %o A134863 from sympy import floor %o A134863 from mpmath import phi %o A134863 def A(n): return floor(n*phi) %o A134863 def B(n): return floor(n*phi**2) %o A134863 def a(n): return B(A(B(n))) # _Indranil Ghosh_, Jun 10 2017 %o A134863 (Python) %o A134863 from math import isqrt %o A134863 def A134863(n): return 5*(n+isqrt(5*n**2)>>1)+3*n-1 # _Chai Wah Wu_, Aug 11 2022 %Y A134863 Cf. A000201, A001950, A003622, A003623, A035336, A101864, A134859, A035337, A134860, A134861, A134862, A035338, A134864, A035513. %Y A134863 Let A = A000201, B = A001950. Then AA = A003622, AB = A003623, BA = A035336, BB = A101864. The eight triples AAA, AAB, ..., BBB are A134859, A134860, A035337, A134862, A134861, A134863, A035338, A134864, resp. %K A134863 nonn %O A134863 1,1 %A A134863 _Clark Kimberling_, Nov 14 2007 # Content is available under The OEIS End-User License Agreement: http://oeis.org/LICENSE