# Greetings from The On-Line Encyclopedia of Integer Sequences! http://oeis.org/ Search: id:a123862 Showing 1-1 of 1 %I A123862 #12 Mar 12 2021 22:24:44 %S A123862 1,2,2,4,6,8,12,18,26,34,48,64,84,112,146,192,246,316,402,508,640,804, %T A123862 1008,1248,1548,1910,2344,2872,3510,4276,5184,6280,7578,9120,10956, %U A123862 13128,15702,18724,22292,26480,31392,37148,43884,51760,60912,71592 %N A123862 Expansion of f(q)*f(q^7)/(f(-q)*f(-q^7)) in powers of q where f() is a Ramanujan theta function. %C A123862 Ramanujan theta functions: f(q) := Prod_{k>=1} (1-(-q)^k) (see A121373), phi(q) := theta_3(q) := Sum_{k=-oo..oo} q^(k^2) (A000122), psi(q) := Sum_{k=0..oo} q^(k*(k+1)/2) (A010054), chi(q) := Prod_{k>=0} (1+q^(2k+1)) (A000700). %H A123862 G. C. Greubel, Table of n, a(n) for n = 0..1000 %H A123862 Michael Somos, Introduction to Ramanujan theta functions %H A123862 Eric Weisstein's World of Mathematics, Ramanujan Theta Functions %F A123862 Euler transform of period 28 sequence [ 2, -1, 2, 0, 2, -1, 4, 0, 2, -1, 2, 0, 2, -2, 2, 0, 2, -1, 2, 0, 4, -1, 2, 0, 2, -1, 2, 0, ...]. %F A123862 G.f. A(x) satisfies 0=f(A(x), A(x^2)) where f(u, v)=(u-1)^2 -2*u*v*(v-1). %F A123862 a(n) ~ exp(2*Pi*sqrt(n/7)) / (4 * 7^(1/4) * n^(3/4)). - _Vaclav Kotesovec_, Jun 03 2018 %t A123862 QP := QPochhammer; a[n_]:= SeriesCoefficient[QP[-q]*QP[-q^7]/( QP[q]* QP[q^7]), {q, 0, n}]; Table[a[n], {n, 0, 50}] (* _G. C. Greubel_, Jan 04 2018 *) %o A123862 (PARI) {a(n)=local(A); if(n<0, 0, A=x*O(x^n); polcoeff( (eta(x^2+A)*eta(x^14+A))^3/ (eta(x+A)*eta(x^7+A))^2/ (eta(x^4+A)*eta(x^28+A)), n))} %Y A123862 Cf. A123648(n)=a(n)/2 if n>0. %K A123862 nonn %O A123862 0,2 %A A123862 _Michael Somos_, Oct 14 2006 # Content is available under The OEIS End-User License Agreement: http://oeis.org/LICENSE