# Greetings from The On-Line Encyclopedia of Integer Sequences! http://oeis.org/ Search: id:a116414 Showing 1-1 of 1 %I A116414 #26 Oct 09 2019 03:56:24 %S A116414 1,4,1,13,8,1,40,42,12,1,121,184,87,16,1,364,731,496,148,20,1,1093, %T A116414 2736,2454,1040,225,24,1,3280,9844,11064,6170,1880,318,28,1,9841, %U A116414 34448,46738,32624,13015,3080,427,32,1,29524,118101,188208,158724,79044,24381,4704 %N A116414 Riordan array (1/((1-x)(1-3x)),x/((1-x)(1-3x))). %C A116414 Row sums are A116415. Diagonal sums are A007070. First column is A003462(n+1). Product of A007318 and A116412. %C A116414 Subtriangle of triangle given by (0, 4, -3/4, 3/4, 0, 0, 0, 0, 0, 0, 0, ...) DELTA (1, 0, 0, 0, 0, 0, 0, 0, 0, 0, ...) where DELTA is the operator defined in A084938. - _Philippe Deléham_, Jan 18 2012 %H A116414 Michael De Vlieger, Table of n, a(n) for n = 0..11324 (rows 0 <= n <= 150) %H A116414 Milan Janjić, Words and Linear Recurrences, J. Int. Seq. 21 (2018), #18.1.4. %F A116414 Riordan array (1/(1-4x+3x^2), x/(1-4x+3x^2)); number triangle T(n,k) = Sum_{j=0..n} binomial(n-j,k)*binomial(k+j,j)*3^j. %F A116414 T(n,k) = 4*T(n-1,k) + T(n-1,k-1) - 3*T(n-2,k), T(0,0) = T(1,1) = T(2,2) = 1, T(1,0) = T(2,0) = 0, T(2,1) = 4, T(n,k) = 0 if k < 0 or if k > n. - _Philippe Deléham_, Oct 31 2013 %F A116414 G.f.: (1-4*x+3*x^2)/(1-4*x+3*x^2-x*y). - _Philippe Deléham_, Oct 31 2013 %F A116414 From _Peter Bala_, Oct 07 2019: (Start) %F A116414 O.g.f.: 1/(1 - 4*x + 3*x^2 - x*y) = 1 + (4 + y)*x + (13 + 8*y + y^2)*x^2 + .... %F A116414 Recurrence for row polynomials: R(n,y) = (4 + y)*R(n-1,y) - 3*R(n-2,y) with R(0,y) = 1 and R(1,y) = 4 + y. %F A116414 The row reverse polynomial y^n*R(n,1/y) is equal to the numerator polynomial of the finite continued fraction 1 + y/(1 + 3*y/(1 + ... + y/(1 + 3*y/(1)))) (with 2*n partial numerators). Cf. A110441. (End) %e A116414 Triangle begins %e A116414 1; %e A116414 4, 1; %e A116414 13, 8, 1; %e A116414 40, 42, 12, 1; %e A116414 121, 184, 87, 16, 1; %e A116414 364, 731, 496, 148, 20, 1; %e A116414 Triangle T(n,k), 0 <= k <= n, given by (0, 4, -3/4, 3/4, 0, 0, 0, ...) DELTA (1, 0, 0, 0, 0, ...) begins: %e A116414 1; %e A116414 0, 1; %e A116414 0, 4, 1; %e A116414 0, 13, 8, 1; %e A116414 0, 40, 42, 12, 1; %e A116414 0, 121, 184, 87, 16, 1; %e A116414 0, 364, 731, 496, 148, 20, 1; %e A116414 ... - _Philippe Deléham_, Jan 18 2012 %t A116414 With[{n = 10}, DeleteCases[#, 0] & /@ Rest@ CoefficientList[Series[(1 - 4 x + 3 x^2)/(1 - 4 x + 3 x^2 - x y), {x, 0, n}, {y, 0, n}], {x, y}]] // Flatten (* _Michael De Vlieger_, Apr 25 2018 *) %Y A116414 Cf. A003462, A116412, A110441. %K A116414 easy,nonn,tabl %O A116414 0,2 %A A116414 _Paul Barry_, Feb 13 2006 # Content is available under The OEIS End-User License Agreement: http://oeis.org/LICENSE