# Greetings from The On-Line Encyclopedia of Integer Sequences! http://oeis.org/ Search: id:a100982 Showing 1-1 of 1 %I A100982 #187 Aug 13 2024 22:54:59 %S A100982 1,1,2,3,7,12,30,85,173,476,961,2652,8045,17637,51033,108950,312455, %T A100982 663535,1900470,5936673,13472296,39993895,87986917,257978502, %U A100982 820236724,1899474678,5723030586,12809477536,38036848410,84141805077,248369601964 %N A100982 Number of admissible sequences of order j; related to 3x+1 problem and Wagon's constant. %C A100982 Eric Roosendaal counted all admissible sequences up to order j=1000 (2005). Note: there is a typo in both Wagon and Chamberland in the definition of Wagon's constant 9.477955... The expression floor(1 + 2*i + i*log_2(3)) should be replaced by floor(1 + i + i*log_2(3)). %C A100982 The length of all admissible sequences of order j is A020914(j). - _T. D. Noe_, Sep 11 2006 %C A100982 Conjecture: a(n) is given for each n > 3 by a formula using a(2)..a(n-1). This allows us to create an iterative algorithm which generates a(n) for each n > 6. This has been proved for each n <= 53. For higher values of n the algorithm must be slightly modified. - _Mike Winkler_, Jan 03 2018 %C A100982 Theorem 1: a(k) is given for each k > 1 by a formula using a(1)..a(k-1). Namely, a(1)=1 and a(k+1) = Sum_{m=1..k} (-1)^(m-1)*binomial(floor((k-m+1)*(log(3)/log(2))) + m - 1, m)*a(k-m+1)) for k >= 1. - _Vladimir M. Zarubin_, Sep 25 2015 %C A100982 Theorem 2: a(n) can be generated for each n > 2 algorithmically in a Pascal's triangle-like manner from the two starting values 0 and 1. This result is based on the fact that the Collatz residues (mod 2^k) can be evolved according to a binary tree. There is a direct connection with A076227, A056576 and A022921. - _Mike Winkler_, Sep 12 2017 %C A100982 A177789 shows another theorem and algorithm for generating a(n). - _Mike Winkler_, Sep 12 2017 %H A100982 T. D. Noe, Table of n, a(n) for n = 1..500 %H A100982 M. Chamberland, Una actualizacio del problema 3x+1, Butl. Soc. Catalana Mat. 18 (2003) 19-45. %H A100982 M. Chamberland, English translation %H A100982 Ruud H.G. van Tol, Sequence as counts of lattice walks %H A100982 Ruud H.G. van Tol, A100982 Musings %H A100982 Stan Wagon, The Collatz problem, Math. Intelligencer 7 (1985) 72-76. %H A100982 Mike Winkler, On a stopping time algorithm of the 3n + 1 function, 2011. %H A100982 Mike Winkler, On the structure and the behaviour of Collatz 3n + 1 sequences - Finite subsequences and the role of the Fibonacci sequence, arXiv:1412.0519 [math.GM], 2014. %H A100982 Mike Winkler, New results on the stopping time behaviour of the Collatz 3x + 1 function, arXiv:1504.00212 [math.GM], 2015. %H A100982 Mike Winkler, The algorithmic structure of the finite stopping time behavior of the 3x + 1 function, arXiv:1709.03385 [math.GM], 2017. %F A100982 A sequence s(k), where k=1, 2, ..., n, is *admissible* if it satisfies s(k)=3/2 exactly j times, s(k)=1/2 exactly n-j times, s(1)*s(2)*...*s(n) < 1 but s(1)*s(2)*...*s(m) > 1 for all 1 < m < n. %F A100982 a(n) = (m+n-2)!/(m!*(n-2)!) - Sum_{i=2..n-1} binomial(floor((3*(n-i)+b)/2), n-i)*a(i), where m = floor((n-1)*log_2(3))-(n-1) and b assumes different integer values within the sum at intervals of 5 or 6 terms. (Conjecture) %F A100982 a(n) = Sum_{k=n-1..A056576(n-1)} (k,n). (Theorem 2, cf. example) %F A100982 a(k) = 2*A076227(A020914(k)-1) - A076227(A020914(k)), for k > 0. - _Vladimir M. Zarubin_, Sep 29 2019 %F A100982 a(1)=1, a(n) = Sum_{k=0..A020914(n-1)-n-2} A325904(k)*binomial(A020914(n-1)-k-2, n-2) for n>1. - _Benjamin Lombardo_, Oct 18 2019 %e A100982 The unique admissible sequence of order 1 is 3/2, 1/2. %e A100982 The unique admissible sequence of order 2 is 3/2, 3/2, 1/2, 1/2. %e A100982 The two admissible sequences of order 3 are 3/2, 3/2, 3/2, 1/2, 1/2 and 3/2, 3/2, 1/2, 3/2, 1/2. %e A100982 a(13) = 8045 = binomial(floor(5*(13-2)/3), 13-2) %e A100982 - Sum_{i=2..6} binomial(floor((3*(13-i)+0)/2), 13-i)*a(i) %e A100982 - Sum_{i=7..11} binomial(floor((3*(13-i)-1)/2), 13-i)*a(i) %e A100982 - Sum_{i=12..12} binomial(floor((3*(13-i)-2)/2), 13-i)*a(i) %e A100982 = 31824 - 4368*1 - 3003*2 - 715*3 - 495*7 - 120*12 - 28*30 - 21*85 - 5*173 - 4*476 - 1*961 - 0*2652. (Conjecture) %e A100982 From _Mike Winkler_, Sep 12 2017: (Start) %e A100982 The next table shows how Theorem 2 works. No entry is equal to zero. %e A100982 n = 3 4 5 6 7 8 9 10 11 12 .. |A076227(k)= %e A100982 --------------------------------------------------| %e A100982 k = 2 | 1 | 1 %e A100982 k = 3 | 1 1 | 2 %e A100982 k = 4 | 2 1 | 3 %e A100982 k = 5 | 3 1 | 4 %e A100982 k = 6 | 3 4 1 | 8 %e A100982 k = 7 | 7 5 1 | 13 %e A100982 k = 8 | 12 6 1 | 19 %e A100982 k = 9 | 12 18 7 1 | 38 %e A100982 k = 10 | 30 25 8 1 | 64 %e A100982 k = 11 | 30 55 33 9 1 | 128 %e A100982 : | : : : : .. | : %e A100982 --------------------------------------------------|--------- %e A100982 a(n) = 2 3 7 12 30 85 173 476 961 2652 .. | %e A100982 The entries (k,n) in this table are generated by the rule (k+1,n) = (k,n) + (k,n-1). The last value of (k+1,n) is given by k+1 = A056576(n-1), or the highest value in column n is given twice only if A022921(n-2) = 2. Then a(n) is equal to the sum of the entries in column n. For n = 7 there is 1 = 0 + 1, 5 = 1 + 4, 12 = 5 + 7, 12 = 12 + 0. Therefore a(7) = 1 + 5 + 12 + 12 = 30. The sum of row k is equal to A076227(k). (End) %e A100982 From _Ruud H.G. van Tol_, Dec 04 2023: (Start) %e A100982 A tree view. %e A100982 n-tree--A098294--ids-----paths-----------------a(n) %e A100982 0 ._ 0 0 0 - %e A100982 1 |_ 1 1 10 1 %e A100982 2 |_._ 2 2 1100 1 %e A100982 3 |_|_ 2 3-4 11010 - 11100 2 %e A100982 4 |_|_._ 3 5-7 1101100 - 1111000 3 %e A100982 5 |_|_|_ 3 8-14 11011010 - 11111000 7 %e A100982 6 |_|_|_._ 4 15-26 1101101100-1111110000 12 %e A100982 7 |_|_|_|_._ 5 27-56 ... 30 %e A100982 8 |_|_|_|_|_ 5 57-141 ... 85 %e A100982 ... %e A100982 For n>=1, the endpoints are at A098294(n) to the right. %e A100982 (End) %t A100982 (* based on Eric Roosendaal's algorithm *) nn=100; Clear[x,y]; Do[x[i]=0, {i,0,nn+1}]; x[1]=1; t=Table[Do[y[cnt]=x[cnt]+x[cnt-1], {cnt,p+1}]; Do[x[cnt]=y[cnt], {cnt,p+1}]; admis=0; Do[If[(p+1-cnt)*Log[3]6*f, if(frac(n/2)==0, e=e1, e=e2)); if(frac((n-6 )/12)==0, f++; e1=e1+2); if(frac((n-12)/12)==0, f++; e2=e2+2); Sum=a=b=0; c=1; d=5; until(c>=n-1, for(i=2+a*5+b, 1+d+a*5, if(i>11 && frac((i+2)/6)==0, b++); delta=e-a; Sum=Sum+binomial(floor((3*(n-i)+delta)/2),n-i)*zn[i]; c++); a++; for(k=3, 50, if(n>=k*6 && a==k-1, d=k+3))); zn[n]=j-Sum; print(n" "zn[n]))} \\ _Mike Winkler_, Jan 03 2018 %o A100982 (PARI) /* cf. code for Theorem 2 */ %o A100982 {limit=100; /*or limit>100*/ p=q=vector(limit); c=2; w=log(3)/log(2); for(n=3, limit, p[1]=Sum=1; for(i=2, c, p[i]=p[i-1]+q[i]; Sum=Sum+p[i]); a_n=Sum; print(n" "a_n); for(i=1, c, q[i]=p[i]); d=floor(n*w)-floor((n-1)*w); if(d==2, c++)); } \\ _Mike Winkler_, Apr 14 2015 %o A100982 (PARI) /* algorithm for Theorem 1 */ %o A100982 n=20; a=vector(n); log32=log(3)/log(2); %o A100982 {a[1]=1; for ( k=1, n-1, a[k+1]=sum( m=1,k,(-1)^(m-1)*binomial( floor( (k-m+1)*log32)+m-1,m)*a[k-m+1] ); print(k" "a[k]) ); %o A100982 } \\ _Vladimir M. Zarubin_, Sep 25 2015 %o A100982 (PARI) /* algorithm for Theorem 2 */ %o A100982 {limit=30; /*or limit>30*/ R=matrix(limit,limit); R[2,1]=0; R[2,2]=1; for(n=2, limit, print; print1("For n="n" in column n: "); Kappa_n=floor(n*log(3)/log(2)); a_n=0; for(k=n, Kappa_n, R[k+1,n]=R[k,n]+R[k,n-1]; print1(R[k+1,n]", "); a_n=a_n+R[k+1,n]); print; print(" and the sum is a(n)="a_n))} \\ _Mike Winkler_, Sep 12 2017 %Y A100982 Cf. A122790 (Wagon's constant), A076227, A056576, A022921, A098294, A177789. %Y A100982 Cf. A060941, A293946. %K A100982 nonn,walk %O A100982 1,3 %A A100982 _Steven Finch_, Jan 13 2005 %E A100982 Two more terms from Jules Renucci (jules.renucci(AT)wanadoo.fr), Nov 02 2005 %E A100982 More terms from _T. D. Noe_, Sep 11 2006 # Content is available under The OEIS End-User License Agreement: http://oeis.org/LICENSE