# Greetings from The On-Line Encyclopedia of Integer Sequences! http://oeis.org/ Search: id:a107448 Showing 1-1 of 1 %I A107448 #8 Mar 23 2024 20:23:12 %S A107448 5,7,11,17,13,17,23,31,41,53,67,83,101,19,23,29,37,47,59,73,89,107, %T A107448 127,149,173,199,227,257,43,47,53,61,71,83,97,113,131,151,173,197,223, %U A107448 251,281,313,347,383,421,461,503,547,593,641,691,743,797,853,911,971,1033 %N A107448 Irregular triangle T(n, k) = b(n) + k^2 + k + 1, where b(n) = A056486(n-1) - (1/2)*[n=1], for n >= 1 and 1 <= k <= b(n) - 1, read by rows. %C A107448 Former title: Triangular form sequence made from a version of A082605 Euler extension. %D A107448 Advanced Number Theory, Harvey Cohn, Dover Books, 1963, Page 155 %H A107448 G. C. Greubel, Rows n = 1..10 of the irregular triangle, flattened %F A107448 T(n, k) = b(n) + k^2 + k + 1, where b(n) = A056486(n-1) - (1/2)*[n=1], for n >= 1 and 1 <= k <= b(n) - 1. - _G. C. Greubel_, Mar 23 2024 %e A107448 The irregular triangle begins as: %e A107448 5; %e A107448 7, 11, 17; %e A107448 13, 17, 23, 31, 41, 53, 67, 83, 101; %e A107448 19, 23, 29, 37, 47, 59, 73, 89, 107, 127, 149, 173, 199, 227, 257; %t A107448 (* First program *) %t A107448 a[1] = 3; a[2] = 5; a[3] = 11; a[n_]:= a[n]= Abs[1-4*a[n-2]] -2; %t A107448 euler= Table[a[n], {n,10}]; %t A107448 Table[k^2 + k + euler[[n]], {n,7}, {k,euler[[i]] -2}]//Flatten %t A107448 (* Second program *) %t A107448 b[n_]:= 2^(n-3)*(9-(-1)^n) - Boole[n==1]/2; %t A107448 T[n_, k_]:= b[n] +k^2+k+1; %t A107448 Table[T[n,k], {n,8}, {k,b[n]-1}]//Flatten (* _G. C. Greubel_, Mar 23 2024 *) %o A107448 (Magma) %o A107448 b:= func< n | n eq 1 select 2 else 2^(n-3)*(9-(-1)^n) >; %o A107448 A107448:= func< n,k | b(n) +k^2 +k +1 >; %o A107448 [A107448(n,k): k in [1..b(n)-1], n in [1..8]]; // _G. C. Greubel_, Mar 23 2024 %o A107448 (SageMath) %o A107448 def b(n): return 2^(n-3)*(9-(-1)^n) - int(n==1)/2 %o A107448 def A107448(n,k): return b(n) + k^2+k+1; %o A107448 flatten([[A107448(n,k) for k in range(1,b(n))] for n in range(1,8)]) # _G. C. Greubel_, Mar 23 2024 %Y A107448 Cf. A056486, A082605. %K A107448 nonn %O A107448 1,1 %A A107448 _Roger L. Bagula_, May 26 2005 %E A107448 Edited by _G. C. Greubel_, Mar 23 2024 # Content is available under The OEIS End-User License Agreement: http://oeis.org/LICENSE