# Greetings from The On-Line Encyclopedia of Integer Sequences! http://oeis.org/ Search: id:a088540 Showing 1-1 of 1 %I A088540 #31 Jan 14 2024 04:35:00 %S A088540 1,2,9,2,3,0,4,1,5,7,1,2,8,6,8,8,6,0,7,1,0,9,1,3,8,3,8,9,8,7,0,4,3,2, %T A088540 0,6,5,3,4,2,9,6,1,4,2,5,0,1,2,9,9,7,2,4,1,2,2,7,6,2,9,2,3,1,6,1,9,5, %U A088540 0,0,0,5,5,2,8,2,3,2,0,7,9,4,2,7,3,0,3,0,7,5,9,7,5,5,2,4,4,9,9,4,1,6,1,3,2 %N A088540 Decimal expansion of (4/sqrt(Pi))*exp(-gamma/2)*K where K is the Landau-Ramanujan constant and gamma the Euler-Mascheroni constant. %C A088540 An illustration of the Chebyshev effect. %D A088540 S. R. Finch, Mathematical Constants, Encyclopedia of Mathematics and its Applications, vol. 94, Cambridge University Press, p. 100 %H A088540 Gareth A. Jones and Alexander K. Zvonkin, A number-theoretic problem concerning pseudo-real Riemann surfaces, arXiv:2401.00270 [math.NT], 2023. See page 5. %H A088540 S. Uchiyama, On some products involving primes, Proc. Amer. Math. Soc. 28 (1971) 629-630; MR 43#3227. %F A088540 (4/sqrt(Pi))*exp(-gamma/2)*K = lim_{x->oo} Product_{p prime, p == 1 (mod 4), p <= x} (1 - 1/p). %F A088540 Equals 4*A087197*A064533/exp(A155739). [_R. J. Mathar_, Feb 05 2009] %e A088540 1.2923041571286886071... %t A088540 digits = 105; LandauRamanujanK = 1/Sqrt[2]*NProduct[((1 - 2^(-2^n))*Zeta[2^n]/DirichletBeta[2^n])^(1/2^(n + 1)), {n, 1, 24}, WorkingPrecision -> digits + 5]; 4/Sqrt[Pi]*Exp[-EulerGamma/2]*LandauRamanujanK // RealDigits[#, 10, digits] & // First (* _Jean-François Alcover_, Jun 04 2014, updated Mar 14 2018 *) %Y A088540 Cf. A087197, A064533, A088541, A155739. %K A088540 cons,nonn %O A088540 1,2 %A A088540 _Benoit Cloitre_, Nov 16 2003 %E A088540 Offset corrected by _R. J. Mathar_, Feb 05 2009 # Content is available under The OEIS End-User License Agreement: http://oeis.org/LICENSE