# Greetings from The On-Line Encyclopedia of Integer Sequences! http://oeis.org/ Search: id:a075262 Showing 1-1 of 1 %I A075262 #5 Mar 30 2012 17:22:26 %S A075262 15,231,45,165,2145,105,153,8911,693,207,25425,1683,957,58311,1001, %T A075262 10465,115921,6435,19065,208335,10965,2961,347361,2907,5035,546535, %U A075262 26733,18585,821121,39123,112125,1188111,7475,157975,1666225,76275 %N A075262 z-value of the solution (x,y,z) to 3/(2n+1) = 1/x + 1/y + 1/z satisfying 0 < x < y < z, odd x, y, z and having the largest z-value. The x and y components are in A075260 and A075261. %C A075262 See A075259 for more details. %t A075262 m=3; For[xLst={}; yLst={}; zLst={}; n=5, n<=200, n=n+2, cnt=0; xr=n/m; If[IntegerQ[xr], x=xr+1, x=Ceiling[xr]]; While[yr=1/(m/n-1/x); If[IntegerQ[yr], y=yr+1, y=Ceiling[yr]]; cnt==0&&y>x, While[zr=1/(m/n-1/x-1/y); cnt==0&&zr>y, If[IntegerQ[zr], z=zr; If[OddQ[x y z], cnt++; AppendTo[xLst, x]; AppendTo[yLst, y]; AppendTo[zLst, z]]]; y++ ]; x++ ]; If[cnt==0, AppendTo[xLst, 0]; AppendTo[yLst, 0]; AppendTo[zLst, 0]]]; zLst %Y A075262 Cf. A075259, A075260, A075261. %K A075262 nice,nonn %O A075262 2,1 %A A075262 _T. D. Noe_, Sep 10 2002 # Content is available under The OEIS End-User License Agreement: http://oeis.org/LICENSE